User Tools

Site Tools


aneurysmal_subarachnoid_hemorrhage_complication

Aneurysmal subarachnoid hemorrhage complications

The case fatality after aneurysmal haemorrhage is 50%; one in eight patients with subarachnoid haemorrhage dies outside hospital. Rebleeding is the most imminent danger; a first aim is therefore occlusion of the aneurysm 1).

Intracranial hemorrhage

Aneurysmal subarachnoid hemorrhage is complicated by intracerebral hemorrhage in 20—40 %, by intraventricular hemorrhage in 13-28%, and by subdural blood in 2-5% (usually due to posterior communicating aneurysm when over convexity, or distal anterior intracerebral artery (DACA) aneurysm with interhemispheric subdural).

The intracranial effects of aSAH causing death and disability are from vasospasm, direct effects of the initial bleed, increased intracranial pressure (ICP) and rebleeding 2).

Early brain injury and hydrocephalus (HCP) are important mediators of poor outcome in subarachnoid hemorrhage (SAH) patients. Injection of SAH patients' CSF into the rat ventricle leads to HCP as well as subependymal injury compared with injection of control CSF 3).

Fever is a common occurrence (70%) especially in poor grades, contributes to adverse outcome and may not always respond to conventional treatment.

Persistent hyperglycemia (>200 mg/dl for >2 consecutive days) increases the likelihood of poor outcome after aSAH.

Management of patients following aSAH includes four major considerations:

(1) prediction of patients at highest risk for development of DCI,

(2) prophylactic measures to reduce its occurrence,

(3) monitoring to detect early signs of cerebral ischemia,

(4) treatments to correct vasospasm and cerebral ischemia once it occurs 4).

Vasospasm

Delayed cerebral ischemia

The risk of delayed cerebral ischemia is reduced with oral nimodipine and probably by maintaining circulatory volume 5).

Failure of cerebral autoregulation has been shown in patients with aSAH even before vasospasm sets in and contributes to delayed ischemic neurological deficits (DIND) along with vasospasm 6)

Rebleeding

Pulmonary complications

Subarachnoid hemorrhage (SAH) is often accompanied by pulmonary complications, which may lead to poor outcomes and death.

Sympathetic activation of the cardiovascular system in aneurysmal subarachnoid hemorrhage not only triggers the release of atrial and brain natriuretic peptides it can also lead to increased pulmonary venous pressures and permeability causing hydrostatic pulmonary edema 7).

see Neurogenic pulmonary edema.

Cardiac manifestations

Cardiac manifestations of intracranial subarachnoid hemorrhage patients include mild electrocardiogram variability, Takotsubo cardiomyopathy, non-ST elevation myocardial infarction, ST-elevation myocardial infarction and cardiac arrest, but their clinical relevance is unclear.

Among patients suffering from cardiac events at the time of aneurysmal subarachnoid hemorrhage, those with myocardial infarction and in particular those with a troponin level greater than 1.0 mcg/L had a 10 times increased risk of death 8).

Hyponatremia

Hyponatremia is a common complication occurring in one-third of aSAH patients. This is secondary to syndrome of inappropriate diuretic hormone (SIADH) or cerebral salt wasting (CSW). CSW occurs from increased natriuretic peptide secretion and causes hyponatremia with diuresis and natriuresis, reduces total blood volume and increases risk of vasospasm. SIADH manifests as euvolemic hyponatremia with concentrated urine from excessive ADH secretion. CSW is managed by administering isotonic fluids and fludrocortisone while SIADH is corrected with fluid restriction. Severe and refractory hyponatremia may warrant hypertonic saline administration. Other electrolyte disturbances in these patients include hypomagnesemia, hypokalemia and hypocalcemia 9).

Hypokalemia

Hypokalemia is a common electrolyte disorder in the intensive care unit. Its cause often is complex, involving both potassium losses from the body and shifts of potassium into cells.

We present a case of severe hypokalemia of sudden onset in a patient being treated for subarachnoid hemorrhage in the surgical intensive care unit in order to illustrate the diagnosis and management of severe hypokalemia of unclear cause. The patient received agents that promote renal potassium losses and treatments associated with a shift of potassium into cells. Ibanez et al. outline the steps in diagnosis and management, focusing on the factors regulating the transcellular distribution of potassium in the body 10).

Hydrocephalus

Intraventricular hemorrhage

The clinical outcome after aneurysm rupture is at least in part determined by the severity of IVH. Knowledge of the effect of IVH may help guide physicians in the care of patients with aneurysmal bleeding 11).

Neuropsychiatric disturbance

Deep vein thrombosis

Overall rates of VTE (Deep vein thrombosis DVT or PE), DVT, and PE were 4.4%, 3.5%, and 1.2%, respectively. On multivariate analysis, the following factors were associated with increased VTE risk: increasing age, black race, male sex, teaching hospital, congestive heart failure, coagulopathy, neurologic disorders, paralysis, fluid and electrolyte disorders, obesity, and weight loss. Patients that underwent clipping versus coiling had similar VTE rates. VTE was associated with pulmonary/cardiac complication (odds ratio [OR] 2.8), infectious complication (OR 2.8), ventriculostomy (OR 1.8), and vasospasm (OR 1.3). Patients with VTE experienced increased non-routine discharge (OR 3.3), and had nearly double the mean length of stay (p<0.001) and total inflation-adjusted hospital charges (p<0.001). To our knowledge, this is the largest study evaluating the incidence and risk factors associated with the development of VTE after aSAH. The presence of one or more of these factors may necessitate more aggressive VTE prophylaxis 12).

Short course (<48h) administration of EACA in patients with aneurysmal subarachnoid hemorrhage is associated with an 8.5 times greater risk of Deep vein thrombosis (DVT) formation 13).

Routine compressive venous Doppler ultrasonography is an efficient, noninvasive means of identifying Deep vein thrombosis (DVT) as a screening modality in both symptomatic and asymptomatic patients following aneurysmal SAH. The ability to confirm or deny the presence of DVT allows one to better identify the indications for chemoprophylaxis. Prophylaxis for venous thromboembolism in neurosurgical patients is common. Emerging literature and anecdotal experience have exposed risks of complications with prophylactic anticoagulation protocols. The identification of patients at high risk-for example, those with asymptomatic DVT-will allow physicians to better assess the role of prophylactic anticoagulation 14).

Deep vein thrombosis (DVT) formation most commonly occurs in the first 2 weeks following aSAH, with detection in a cohort peaking between Days 5 and 9. Chemoprophylaxis is associated with a significantly lower incidence of DVT 15).

Prevention

Patient should be ideally monitored in the NICU for at least 1st 24 h after surgery. Anticonvulsants, osmotherapy and nimodipine must be continued. Hydrocephalus, vasospasm, seizures, and electrolyte disturbances can occur necessitating close observation and prompt management. One of the major challenges in the management of aSAH is identifying potential or ongoing perfusion deficits. Ischemic insults can occur following ictus, or due to raised ICP, hypotension and vasospasm. Early identification and appropriate treatment of postictal intracranial (ICP, TCD flow velocities) and cardiovascular (cardiac output, ECG, BP, CVP) changes is possible in dedicated NICU and is crucial for improving outcomes. Heuer et al. observed that raised ICP (>20 mmHg) occurred in >50% of patients after aSAH and was associated with poor outcomes. Factors associated with raised ICP included poor clinical and radiological grades of aSAH, intraoperative brain swelling, parenchymal and intraventricular bleed and rebleeding.

Seizure

1) , 5)
van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007 Jan 27;369(9558):306-18. Review. PubMed PMID: 17258671.
2)
Kassell MJ. Aneurysmal subarachnoid hemorrhage: An update on the medical complications and treatments strategies seen in these patients. Curr Opin Anaesthesiol. 2011;24:500–7.
3)
Li P, Chaudhary N, Gemmete JJ, Thompson BG, Hua Y, Xi G, Pandey AS. Intraventricular Injection of Noncellular Cerebrospinal Fluid from Subarachnoid Hemorrhage Patient into Rat Ventricles Leads to Ventricular Enlargement and Periventricular Injury. Acta Neurochir Suppl. 2016;121:331-4. doi: 10.1007/978-3-319-18497-5_57. PubMed PMID: 26463970.
4)
Dusick JR, Gonzalez NR. Management of arterial vasospasm following aneurysmal subarachnoid hemorrhage. Semin Neurol. 2013 Nov;33(5):488-97. doi: 10.1055/s-0033-1364216. Epub 2014 Feb 6. PubMed PMID: 24504612.
6)
Sriganesh K, Venkataramaiah S. Concerns and challenges during anesthetic management of aneurysmal subarachnoid hemorrhage. Saudi J Anaesth. 2015 Jul-Sep;9(3):306-13. doi: 10.4103/1658-354X.154733. Review. PubMed PMID: 26240552; PubMed Central PMCID: PMC4478826.
7)
Lo BW, Fukuda H, Nishimura Y, Macdonald RL, Farrokhyar F, Thabane L, Levine MA. Pathophysiologic mechanisms of brain-body associations in ruptured brain aneurysms: A systematic review. Surg Neurol Int. 2015 Aug 11;6:136. doi: 10.4103/2152-7806.162677. eCollection 2015. PubMed PMID: 26322246.
8)
Ahmadian A, Mizzi A, Banasiak M, Downes K, Camporesi EM, Thompson Sullebarger J, Vasan R, Mangar D, van Loveren HR, Agazzi S. Cardiac manifestations of subarachnoid hemorrhage. Heart Lung Vessel. 2013;5(3):168-78. PubMed PMID: 24364008; PubMed Central PMCID: PMC3848675.
9)
Rose MJ. Aneurysmal subarachnoid hemorrhage: An update on the medical complications and treatments strategies seen in these patients. Curr Opin Anaesthesiol. 2011;24:500–7.
10)
Ybanez N, Agrawal V, Tranmer BI, Gennari FJ. Severe hypokalemia in a patient with subarachnoid hemorrhage. Am J Kidney Dis. 2014 Mar;63(3):530-5. doi: 10.1053/j.ajkd.2013.07.005. Epub 2013 Aug 20. PubMed PMID: 23972266.
11)
Mayfrank L, Hütter BO, Kohorst Y, Kreitschmann-Andermahr I, Rohde V, Thron A, Gilsbach JM. Influence of intraventricular hemorrhage on outcome after rupture of intracranial aneurysm. Neurosurg Rev. 2001 Dec;24(4):185-91. PubMed PMID: 11778824.
12)
Kshettry VR, Rosenbaum BP, Seicean A, Kelly ML, Schiltz NK, Weil RJ. Incidence and risk factors associated with in-hospital venous thromboembolism after aneurysmal subarachnoid hemorrhage. J Clin Neurosci. 2014 Feb;21(2):282-6. doi: 10.1016/j.jocn.2013.07.003. Epub 2013 Oct 13. PubMed PMID: 24128773.
13)
Foreman PM, Chua M, Harrigan MR, Fisher WS 3rd, Tubbs RS, Shoja MM, Griessenauer CJ. Antifibrinolytic therapy in aneurysmal subarachnoid hemorrhage increases the risk for deep venous thrombosis: A case-control study. Clin Neurol Neurosurg. 2015 Sep 10;139:66-69. doi: 10.1016/j.clineuro.2015.09.005. [Epub ahead of print] PubMed PMID: 26378393.
14)
Ray WZ, Strom RG, Blackburn SL, Ashley WW, Sicard GA, Rich KM. Incidence of deep venous thrombosis after subarachnoid hemorrhage. J Neurosurg. 2009 May;110(5):1010-4. doi: 10.3171/2008.9.JNS08107. PubMed PMID: 19133755.
15)
Liang CW, Su K, Liu JJ, Dogan A, Hinson HE. Timing of deep vein thrombosis formation after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2015 Oct;123(4):891-6. doi: 10.3171/2014.12.JNS141288. Epub 2015 Jul 10. PubMed PMID: 26162047; PubMed Central PMCID: PMC4591180.
aneurysmal_subarachnoid_hemorrhage_complication.txt · Last modified: 2017/09/07 15:12 by administrador