User Tools

Site Tools


anterior_cervical_discectomy_and_fusion_complications

Anterior cervical discectomy and fusion complications

ACD is known to be associated with a higher risk either of residual increased neck and shoulder pain 1) 2) or of developing a postoperative kyphotic deformity of the cervical spine 3) ; and this, in turn, can lead to the development of degenerative changes at adjacent levels


A 2-page survey was distributed to attendees at the 2015 Cervical Spine Research Society (CSRS) meeting. Respondents were asked to categorize 18 anterior cervical discectomy and fusion-related adverse events as either: “common and acceptable,” “uncommon and acceptable,” “uncommon and sometimes acceptable,” or “uncommon and unacceptable.” Results were compiled to generate the relative frequency of these responses for each complication. Responses for each complication event were also compared between respondents based on practice location (US vs. non-US), primary specialty (orthopedics vs. neurosurgery) and years in practice.

Of 150 surveys distributed, 115 responses were received (76.7% response rate), with the majority of respondents found to be US-based (71.3%) orthopedic surgeons (82.6%). Wrong level surgery, esophageal injury, retained drain, and spinal cord injury were considered by most to be unacceptable and uncommon complications. Dysphagia and adjacent segment disease occurred most often, but were deemed acceptable complications. Although surgeon experience and primary specialty had little impact on responses, practice location was found to significantly influence responses for 12 of 18 complications, with non-US surgeons found to categorize events more toward the uncommon and unacceptable end of the spectrum as compared with US surgeons.

These results serve to aid communication and transparency within the field of spine surgery, and will help to inform future quality improvement and best practice initiatives 4).

Vocal cord palsy

Cervical adjacent segment disease

Hoarseness

Hoarseness, approximately in 5% 5).

Dysphagia

Soft tissue damage due to the use of automatic retractors in MACDF is not minor and leads to general discomfort in the patient in spite of good neurological results. These problems most often occur when automatic retractors are used continuously for more than 1 hour, as well as when they are used in multiple levels. Dysphagia, dysphonia and local pain decreased with the use of transient manual blades for retraction, and with intermittent release following minimally invasive principles 6).

Postoperative dysphagia is a significant concern.

Dexamethasone, although potentially protective against perioperative dysphagia and airway compromise, could inhibit fusion, a generally proinflammatory process.

Postoperative hemorrhage

Cerebrospinal fluid (CSF) leaks

Cerebrospinal fluid (CSF) leaks, although uncommon, may occur and can be a potentially serious complication. Little is known regarding the fusion rate after durotomy in ACDF.

In a single-institution retrospective review, 14 patients who experienced CSF leak after ACDF between 1995 and September 2014 were identified.

The median follow-up was 13.1 months. The diagnoses included spondylosis/degenerative disc disease (n = 10), disc herniation with radiculopathy (n = 3), and kyphotic deformity (n = 1). Of ACDFs, 7 were 1-level, 5 were 2-level, and 2 were 3-level procedures. The posterior longitudinal ligament was intentionally opened in all cases, and the microscope was used in 9 cases. Durotomy was discovered intraoperatively in all cases and was generally repaired with a combination of fibrin glue and synthetic dural replacement. Lumbar drainage was used in 5 patients, and 3 patients reported orthostatic headaches, which resolved within 1 month. Two patients reported hoarseness, and 8 patients reported dysphagia; all cases were transient. Follow-up imaging for fusion assessment was available for 12 patients, and a 100% fusion rate was achieved with no postoperative infections.

ACDFs with CSF leak had a 100% fusion rate in this series, with generally excellent clinical outcomes, although it is difficult to conclude definitively that there is no effect on fusion rates because of the small sample size. However, given the relative rarity of this complication, this study provides important data in the clinical literature regarding outcomes after CSF leak in ACDFs 7).

Pharyngoesophageal perforation

Spinal subdural hematoma

A spinal subdural hematoma is a rare clinical entity with considerable consequences without prompt diagnosis and treatment. Throughout the literature, there are limited accounts of spinal subdural hematoma formation following spinal surgery. This report is the first to describe the formation of a spinal subdural hematoma in the thoracic spine following surgery at the cervical level. A 53-year-old woman developed significant paraparesis several hours after anterior cervical discectomy and fusion of C5-6. Expeditious return to operating room for anterior cervical revision decompression was performed, and the epidural hematoma was evacuated without difficulty. Postoperative imaging demonstrated a subdural hematoma confined to the thoracic level, and the patient was returned to the operating room for a third surgical procedure. Decompression of T1-3, with evacuation of the subdural hematoma was performed. Postprocedure, the patient's sensory and motor deficits were restored, and, with rehabilitation, the patient gained functional mobility. Spinal subdural hematomas should be considered as a rare but potential complication of cervical discectomy and fusion. With early diagnosis and treatment, favorable outcomes may be achieved 8).

Carotid artery compression

Legatt et al., report herein a case of anterior cervical discectomy and fusion (ACDF) surgery in which findings on somatosensory evoked potential (SSEP) monitoring led to the correction of carotid artery compression in a patient with a vascularly isolated hemisphere (no significant collateral blood vessels to the carotid artery territory). The amplitude of the cortical SSEP component to left ulnar nerve stimulation progressively decreased in multiple runs, but there were no changes in the cervicomedullary SSEP component to the same stimulus. When the lateral (right-sided) retractor was removed, the cortical SSEP component returned to baseline. The retraction was then intermittently relaxed during the rest of the operation, and the patient suffered no neurological morbidity. Magnetic resonance angiography demonstrated a vascularly isolated right hemisphere. During anterior cervical spine surgery, carotid artery compression by the retractor can cause hemispheric ischemia and infarction in patients with inadequate collateral circulation. The primary purpose of SSEP monitoring during ACDF surgery is to detect compromise of the dorsal column somatosensory pathways within the cervical spinal cord, but intraoperative SSEP monitoring can also detect hemispheric ischemia. Concurrent recording of cervicomedullary SSEPs can help differentiate cortical SSEP changes due to hemispheric ischemia from those due to compromise of the dorsal column pathways. If there are adverse changes in the cortical SSEPs but no changes in the cervicomedullary SSEPs, the possibility of hemispheric ischemia due to carotid artery compression by the retractor should be considered 9).

Heterotopic Ossification

Heterotopic ossification (HO) has been reported following total hip, knee, cervical arthroplasty, and lumbar arthroplasty, as well as following posterolateral lumbar fusion using recombinant human morphogenetic protein 2 (rhBMP-2). Data regarding HO following anterior cervical discectomy and fusion (ACDF) with rhBMP-2 are sparse. A subanalysis was done of the prospective, multicenter, investigational device exemption trial that compared rhBMP-2 on an absorbable collagen sponge (ACS) versus allograft in ACDF for patients with symptomatic single-level cervical degenerative disc disease.

To assess differences in types of HO observed in the treatment groups and effects of HO on functional and efficacy outcomes, clinical outcomes from previous disc replacement studies were compared between patients who received rhBMP-2/ACS versus allograft. Rate, location, grade, and size of ossifications were assessed preoperatively and at 24 months, and correlated with clinical outcomes. RESULTS Heterotopic ossification was primarily anterior in both groups. Preoperatively in both groups, and including osteophytes in the target regions, HO rates were high at 40.9% and 36.9% for the rhBMP-2/ACS and allograft groups, respectively (p = 0.350). At 24 months, the rate of HO in the rhBMP-2/ACS group was higher than in the allograft group (78.6% vs 59.2%, respectively; p < 0.001). At 24 months, the rate of superior-anterior adjacent-level Park Grade 3 HO was 4.2% in both groups, whereas the rate of Park Grade 2 HO was 19.0% in the rhBMP-2/ACS group compared with 9.8% in the allograft group. At 24 months, the rate of inferior-anterior adjacent-level Park Grade 2/3 HO was 11.9% in the rhBMP-2/ACS group compared with 5.9% in the allograft group. At 24 months, HO rates at the target implant level were similar (p = 0.963). At 24 months, the mean length and anteroposterior diameter of HO were significantly greater in the rhBMP-2/ACS group compared with the allograft group (p = 0.033 and 0.012, respectively). Regarding clinical correlation, at 24 months in both groups, Park Grade 3 HO at superior adjacent-level disc spaces significantly reduced range of motion, more so in the rhBMP-2/ACS group. At 24 months, HO negatively affected Neck Disability Index scores (excluding neck/arm pain scores), neurological status, and overall success in patients in the rhBMP-2/ACS group, but not in patients in the allograft group.

Implantation of rhBMP-2/ACS at 1.5 mg/ml with polyetheretherketone spacer and titanium plate is effective in inducing fusion and improving pain and function in patients undergoing ACDF for symptomatic single-level cervical degenerative disc disease. At 24 months, the rate and dimensions (length and anteroposterior diameter) of HO were higher in the rhBMP-2/ACS group. At 24 months, range of motion was reduced, with Park Grade 3 HO in both treatment groups. The impact of Park Grades 2 and 3 HO on Neck Disability Index success, neurological status, and overall success was not consistent among the treatment groups. The study data may offer a deeper understanding of HO after ACDF and may pave the way for improved device designs 10).

Subsidence

There is evidence documenting relatively frequent complications in stand-alone cage assisted ACDF, such as cage subsidence and cervical kyphosis 11).

Subsidence irrespective of the measurement technique or definition does not appear to have an impact on successful fusion and/or clinical outcomes. A validated definition and standard measurement technique for subsidence is needed to determine the actual incidence of subsidence and its impact on radiographic and clinical outcomes 12).


The results of a observational study were in accordance with those of the published randomized controlled trials (RCTs), suggesting substantial pain reduction both after anterior cervical interbody fusion (AIF) and Cervical total disc replacement, with slightly greater benefit after arthroplasty. The analysis of atypical patients suggested that, in patients outside the spectrum of clinical trials, both surgical interventions appeared to work to a similar extent to that shown for the cohort in the matched study. Also, in the longer-term perspective, both therapies resulted in similar benefits to the patients 13).

Case series

Analysis of 1000 consecutive patients undergoing Anterior cervical discectomy and fusion (ACDF) in an outpatient setting demonstrated surgical complications occur at a low rate (<1%) and can be appropriately diagnosed and managed in 4-hour ASC PACU window. Comparison with inpatient ACDF surgery cohort demonstrated similar results, highlighting that ACDF can be safely performed in an outpatient ambulatory surgery setting without compromising surgical safety. To decrease cost of care, surgeons can safely consider performing 1- and 2-level ACDF in an ASC environment 14).


A retrospective case series of 37 patients, paying special attention to immediate complications related to the use of mechanical retraction of soft tissue (dysphagia, dysphonia, esophageal lesions and local hematoma); and a comparative analysis of the outcomes after changes in the retraction method.

All selected cases had a positive neurological symptom response in relation to neuropathic pain. Dysphagia and dysphonia were found during the first 72 h in 94.1% of the cases in which automatic mechanical retraction was used for more than one hour during the surgical procedure. A radical change was noted in the reduction of the symptoms after the use of only manual protective blades without automatic mechanical retraction: 5.1% dysphagia and 0% dysphonia in the immediate post-operative period, P = 0.001.

Soft tissue damage due to the use of automatic retractors in MACDF is not minor and leads to general discomfort in the patient in spite of good neurological results. These problems most often occur when automatic retractors are used continuously for more than 1 hour, as well as when they are used in multiple levels. Dysphagia, dysphonia and local pain decreased with the use of transient manual blades for retraction, and with intermittent release following minimally invasive principles 15).

1)
LUNSFORD LD, BISSONETTE DJ, JANNETTA PJ, SHEPTAK PE, ZORUB DS. Anterior surgery for cervical disc dis- ease: Part-1 treatment of lateral cervical disc herni- ation in 253 cases. J Neurosurg 1980; 53: 1-11.
2)
LUNSFORD LD, BISSONETTE DJ, ZORUB DS. Anterior surgery for cervical disc disease: Part-2 treatment of cervical spondylotic myelopathy in 32 cases. J Neurosurg 1980; 53: 12-19.
3)
ABD-ALRAHMAN N, DOKMAK AS, ABOU-MADAWI A. An- terior cervical discectomy (ACD) versus anterior cervical fusion (ACF), clinical and radiological outcome study. Acta Neurochir (Wien) 1999; 141: 1089-1092.
4)
Wilson JR, Radcliff K, Schroeder G, Booth M, Lucasti C, Fehlings M, Ahmad N, Vaccaro A, Arnold P, Sciubba D, Ching A, Smith J, Shaffrey C, Singh K, Darden B, Daffner S, Cheng I, Ghogawala Z, Ludwig S, Buchowski J, Brodke D, Wang J, Lehman RA, Hilibrand A, Yoon T, Grauer J, Dailey A, Steinmetz M, Harrop JS. Frequency and Acceptability of Adverse Events After Anterior Cervical Discectomy and Fusion: A Survey Study From the Cervical Spine Research Society. Clin Spine Surg. 2018 Apr 27. doi: 10.1097/BSD.0000000000000645. [Epub ahead of print] PubMed PMID: 29708891.
5)
Morpeth JF, Williams MF. Vocal fold paralysis after anterior cervical diskectomy and fusion. Laryngoscope. 2000 Jan;110(1):43-6. PubMed PMID: 10646714.
6) , 15)
Ramos-Zúñiga R, Díaz-Guzmán LR, Velasquez S, Macías-Ornelas AM, Rodríguez-Vázquez M. A microsurgical anterior cervical approach and the immediate impact of mechanical retractors: A case control study. J Neurosci Rural Pract. 2015 Jul-Sep;6(3):315-9. doi: 10.4103/0976-3147.158748. PubMed PMID: 26167011; PubMed Central PMCID: PMC4481782.
7)
Elder BD, Theodros D, Sankey EW, Bydon M, Goodwin CR, Wolinsky JP, Sciubba DM, Gokaslan ZL, Bydon A, Witham TF. Management of Cerebrospinal Fluid Leakage During Anterior Cervical Discectomy and Fusion and Its Effect on Spinal Fusion. World Neurosurg. 2015 Nov 30. pii: S1878-8750(15)01588-0. doi: 10.1016/j.wneu.2015.11.033. [Epub ahead of print] PubMed PMID: 26654925.
8)
Protzman NM, Kapun J, Wagener C. Thoracic spinal subdural hematoma complicating anterior cervical discectomy and fusion: case report. J Neurosurg Spine. 2015 Oct 13:1-5. [Epub ahead of print] PubMed PMID: 26460756.
9)
Legatt AD, Laarakker AS, Nakhla JP, Nasser R, Altschul DJ. Somatosensory evoked potential monitoring detection of carotid compression during ACDF surgery in a patient with a vascularly isolated hemisphere. J Neurosurg Spine. 2016 Nov;25(5):566-571. PubMed PMID: 27285667.
10)
Arnold PM, Anderson KK, Selim A, Dryer RF, Kenneth Burkus J. Heterotopic ossification following single-level anterior cervical discectomy and fusion: results from the prospective, multicenter, historically controlled trial comparing allograft to an optimized dose of rhBMP-2. J Neurosurg Spine. 2016 Sep;25(3):292-302. doi: 10.3171/2016.1.SPINE15798. Epub 2016 Apr 29. PubMed PMID: 27129045.
11)
Cloward RB: The anterior approach for removal of ruptured cervical disks. 1958. J Neurosurg Spine 6:496-511, 2007
12)
Karikari IO, Jain D, Owens TR, Gottfried O, Hodges TR, Nimjee SM, Bagley CA. Impact of Subsidence on Clinical Outcomes and Radiographic Fusion Rates in Anterior Cervical Discectomy and Fusion: A Systematic Review. J Spinal Disord Tech. 2014 Feb;27(1):1-10. PubMed PMID: 24441059.
13)
Staub LP, Ryser C, Röder C, Mannion AF, Jarvik JG, Aebi M, Aghayev E. Total disc arthroplasty versus anterior cervical interbody fusion: use of the spine tango registry to supplement the evidence from RCTs. Spine J. 2015 Dec 7. pii: S1529-9430(15)01763-5. doi: 10.1016/j.spinee.2015.11.056. [Epub ahead of print] PubMed PMID: 26674445.
14)
McGirt MJ, Mehrlich M, Parker SL, Asher AL, Adamson TE. 165 ACDF in the Outpatient Ambulatory Surgery Setting: Analysis of 1000 Consecutive Cases and Comparison to Hospital Inpatient ACDF. Neurosurgery. 2015 Aug;62 Suppl 1:220. doi: 10.1227/01.neu.0000467129.12773.a3. PubMed PMID: 26182011.
anterior_cervical_discectomy_and_fusion_complications.txt · Last modified: 2018/09/11 08:40 by administrador