User Tools

Site Tools


diffuse_intrinsic_pontine_glioma

Diffuse intrinsic pontine glioma

Epidemiology

Approximately 300 children are diagnosed with diffuse intrinsic pontine gliomas (DIPG) each year, usually between the ages of 5 and 9.

They account for 10% to 25% of pediatric brain tumors.

The majority of DIPGs are astrocytic, infiltrative, and localized to the pons.

Etiology

The majority of the tumors were positive for GFAP (24/24), MIB1 (23/24), OLIG2 (22/24), p16 (20/24), p53 (20/24), SOX2 (19/24), EGFR (16/24), and BMI1 (9/24). The results suggest that dysregulation of EGFR and p53 may play an important role in the development of DIPGs. The majority of DIPGs express stem cell markers such as SOX2 and OLIG2, consistent with a role for tumor stem cells in the origin and maintenance of these tumors 1).

Results suggest that dual targeting of NOTCH and MYCN in DIPG may be an effective therapeutic strategy in DIPG and that adding a γ-secretase inhibitor during radiation therapy may be efficacious initially or during reirradiation 2).

Clinical Features

The symptoms of DIPG usually develop very rapidly prior to diagnosis, reflecting the fast growth of these tumors. Most patients start experiencing symptoms less than three months—and often less than three weeks—before diagnosis. The most common symptoms include:

Rapidly developing problems controlling eye movements, facial expressions, speech, chewing, and swallowing (due to problems in the cranial nerves) Weakness in the arms and legs

Problems with walking and coordination.

Diagnosis

Previously, diagnosis was based on a typical clinical presentation and magnetic resonance imaging findings.

When DIPGs are biopsied, they are usually grade III or grade IV. Occasionally, they are grade II, but because of their location in the brain they are still considered malignant. That being said, diffuse intrinsic pontine gliomas usually progress like grade IV glioblastoma multiforme tumors.


Frameless robotic assisted biopsy of DIPG in pediatric population is an easier, effective, safe and highly accurate method to achieve diagnosis 3).


After the start of the era of biopsy, DIPGs bearing Histone H3K27 mutations have been reclassified into a novel entity, diffuse midline glioma, based on the presence of this molecular alteration. However, it is not well established how clinically diagnosed DIPG overlap with H3 K27-mutated diffuse midline gliomas, and whether rare long-term survivors also belong to this group 4).


Platelet-derived growth factor receptor A is altered by amplification and/or mutation in diffuse intrinsic pontine glioma (DIPG).

A retrospective review of magnetic resonance imaging (MRI) scanning in a pure population of DIPG was undertaken. Baseline diagnostic MRI findings included; local tumour extension in upper medulla (74%) or midbrain (62%), metastatic disease (3%), basilar artery encasement (82%), necrosis (33%), intratumoural haemorrhage (26%), hydrocephalus (23%) and dorsal exophytic component (18%). Post-treatment MRI scans demonstrated increases in; leptomeningeal metastatic disease (16%), cystic change/necrosis (48%), enhancement (72%) and intratumoural haemorrhage (32%). Response rates were calculated according to both RECIST (4%) and WHO (24%) criteria. No MRI parameter in either the diagnostic or response scans had prognostic significance 5).


Accurately determining diffuse intrinsic pontine glioma (DIPG) tumor volume is clinically important.

Eight patients from a Phase I clinical trial testing convection-enhanced delivery (CED) of a therapeutic antibody were included in the study. Pre-CED, post-radiation therapy axial T2-weighted images were analyzed using 2 methods requiring high degrees of subjective judgment (picture archiving and communication system [PACS] polygon and Volume Viewer auto-contour methods) and 1 method requiring a low degree of subjective judgment (k-means clustering segmentation) to determine tumor volumes. Lin's concordance correlation coefficients (CCCs) were calculated to assess interobserver agreement. RESULTS The CCCs of measurements made by 2 observers with the PACS polygon and the Volume Viewer auto-contour methods were 0.9465 (lower 1-sided 95% confidence limit 0.8472) and 0.7514 (lower 1-sided 95% confidence limit 0.3143), respectively. Both were considered poor agreement. The CCC of measurements made using k-means clustering segmentation was 0.9938 (lower 1-sided 95% confidence limit 0.9772), which was considered substantial strength of agreement.

The poor interobserver agreement of PACS polygon and Volume Viewer auto-contour methods highlighted the difficulty in consistently measuring DIPG tumor volumes using methods requiring high degrees of subjective judgment. k-means clustering segmentation, which requires a low degree of subjective judgment, showed better interobserver agreement and produced tumor volumes with delineated borders 6).

Biopsy

The place of stereotactic biopsy in the management of Diffuses Intrinsic Pontine Gliomas (DIPG) in children has changed over the years.

Due to the improvement of neurosurgical technics, it regained credit. Moreover, the era of targeted therapy with molecular and genomic discoveries paved the way to research protocol that requires a biopsy to include the patient. Nonetheless, stereotactic biopsy remains a surgical procedure with its risks. A complication has never been reported in case of a biopsy of a DIPG : metastatic seeding along the tract of the biopsy. Beuriat et al report the first two cases in the literature 7).

Nevertheless, most neurosurgical teams are reluctant to perform biopsy in pediatric patients, citing potential risks and lack of direct benefit. Yet, in reviewing 90 patients with and the published data on brainstem biopsy, these procedures have a diagnostic yield and morbidity and mortality rates similar to those reported for other brain locations. In addition, the quality and quantity of the material obtained confirm the diagnosis and inform an extended molecular screen, including biomarker study-information important to designing next-generation trials with targeted agents. Stereotactic biopsies can be considered a safe procedure in well-trained neurosurgical teams and could be incorporated in well-defined protocols for patients with DIPG 8).

Differential diagnosis

After the start of the era of biopsy, Diffuse intrinsic pontine gliomas (DIPG)s bearing Histone H3K27 mutations have been reclassified into a novel entity, diffuse midline glioma, based on the presence of this molecular alteration. However, it is not well established how clinically diagnosed DIPG overlap with H3 K27-mutated diffuse midline gliomas, and whether rare long-term survivors also belong to this group 9).

Outcome

Diffuse Instrinsic Pontine Glioma is the most aggressive form of High Grade Gliomas in children with with poor prognosis, with an overall survival of 7-14 months.

90% of children die within 2 years.

The lack of biological material and the absence of relevant models have hampered the development of new therapeutics.

Treatment

DIPGs have no effective treatment, and their location and diffuse nature render them inoperable. Radiation therapy remains the only standard of care for this devastating disease.

Until recently biopsies were considered not informative enough and therefore not recommended.


Findings suggest that targeting PLK1 with small-molecule inhibitors, in combination with radiation therapy, will hold a novel strategy in the treatment of Diffuse intrinsic pontine glioma (DIPG) that warrants further investigation 10).

Research

Contemporary survival endpoints: an International Diffuse Intrinsic Pontine Glioma Registry study 11).


Eight patient-derived orthotopic xenograft models were obtained after direct stereotactic injection of a mixed cell suspension containing tumor cells and stromal cells in the brainstem or thalamus of nude mice and serially passaged thereafter. In parallel, we developed 6 cell-derived xenograft models after orthotopic injection of tumor-initiating cells cultured from stereotactic biopsies. Cells were modified to express luciferase to enable longitudinal tumor growth monitoring, and fluorescent reporter proteins to trace the tumor cells in the brain.These models do not form a tumor mass, they are invasive, show the H3K27 trimethylation loss in vivo and the tumor type diversity observed in patients in terms of histone H3 mutations and lineage markers. Histological and MRI features at 11.7 Tesla show similarities with treatment naïve human DIPG, and in this respect, both direct and indirect orthotopic xenograft looked alike. These DIPG models will therefore constitute valuable tools for evaluating new therapeutic approaches in this devastating disease 12).

Case series

2015

130 cases of DIPG biopsies and previous published data, these procedures appear to have a diagnostic yield and morbidity rates similar to those reported for other brain locations (3.9 % of transient morbidity in our series). In addition, the quality and the quantity of the material obtained allow to (1) confirm the diagnosis, (2) reveal that WHO grading was useless to predict outcome, and (3) perform an extended molecular screen, including biomarkers study and the development of preclinical models. Recent studies reveal that DIPG may comprise more than one biological entity and a unique oncogenesis involving mutations never described in other types of cancers, i.e., histones H3 K27M and activin receptor ACVR1.

Stereotactic biopsies of DIPG can be considered as a safe procedure in well-trained neurosurgical teams and could be incorporated in protocols. It is a unique opportunity to integrate DIPG biopsies in clinical practice and use the biology at diagnosis to drive the introduction of innovative targeted therapies, in combination with radiotherapy 13).

2007

A suboccipital, transcerebellar approach was used to obtain biopsy samples in 24 children.

Two patients suffered deficits. Both had a transient (< 2 months) new cranial nerve palsy; one of these patients also experienced an exacerbation of a preoperative hemiparesis. No patient died during the perioperative period. A histological diagnosis was made in all 24 patients as follows: 22 had a malignant infiltrative astrocytoma, one had a low-grade astrocytoma, and one had a pilocytic astrocytoma. The diagnosis of the latter two patients affected the initial treatment after the biopsy.

The findings of this study imply that stereotactic biopsy sampling of a diffuse pontine tumor is a safe procedure, is associated with minimal morbidity, and has a high diagnostic yield. A nonmalignant tumor was identified in two of the 24 patients in whom the imaging findings were characteristic of a malignant infiltrative astrocytoma. With the advent of new treatment protocols, stereotactic biopsy sampling, which would allow specific tumor characterization of diffuse pontine lesions, may become standard 14).

1)
Ballester LY, Wang Z, Shandilya S, Miettinen M, Burger PC, Eberhart CG, Rodriguez FJ, Raabe E, Nazarian J, Warren K, Quezado MM. Morphologic characteristics and immunohistochemical profile of diffuse intrinsic pontine gliomas. Am J Surg Pathol. 2013 Sep;37(9):1357-64. doi: 10.1097/PAS.0b013e318294e817. PubMed PMID: 24076776; PubMed Central PMCID: PMC3787318.
2)
Taylor IC, Hütt-Cabezas M, Brandt WD, Kambhampati M, Nazarian J, Chang HT, Warren KE, Eberhart CG, Raabe EH. Disrupting NOTCH Slows Diffuse Intrinsic Pontine Glioma Growth, Enhances Radiation Sensitivity, and Shows Combinatorial Efficacy With Bromodomain Inhibition. J Neuropathol Exp Neurol. 2015 Jun 25. [Epub ahead of print] PubMed PMID: 26115193.
3)
Coca HA, Cebula H, Benmekhbi M, Chenard MP, Entz-Werle N, Proust F. Diffuse intrinsic pontine gliomas in children: Interest of robotic frameless assisted biopsy. A technical note. Neurochirurgie. 2016 Dec;62(6):327-331. doi: 10.1016/j.neuchi.2016.07.005. PubMed PMID: 28120771.
4) , 9)
Porkholm M, Raunio A, Vainionpää R, Salonen T, Hernesniemi J, Valanne L, Satopää J, Karppinen A, Oinas M, Tynninen O, Pentikäinen V, Kivivuori SM. Molecular alterations in pediatric brainstem gliomas. Pediatr Blood Cancer. 2017 Aug 9. doi: 10.1002/pbc.26751. [Epub ahead of print] PubMed PMID: 28792659.
5)
Hargrave D, Chuang N, Bouffet E. Conventional MRI cannot predict survival in childhood diffuse intrinsic pontine glioma. J Neurooncol. 2008 Feb;86(3):313-9. Epub 2007 Oct 2. PubMed PMID: 17909941.
6)
Singh R, Zhou Z, Tisnado J, Haque S, Peck KK, Young RJ, Tsiouris AJ, Thakur SB, Souweidane MM. A novel magnetic resonance imaging segmentation technique for determining diffuse intrinsic pontine glioma tumor volume. J Neurosurg Pediatr. 2016 Jul 8:1-8. [Epub ahead of print] PubMed PMID: 27391980.
7)
Beuriat PA, Szathmari A, Di Rocco F, Kanold J, Mottolese C, Frappaz D. Diffuse Intrinsic Pontine Glioma in children : document or treat ? World Neurosurg. 2016 Jul 12. pii: S1878-8750(16)30533-2. doi: 10.1016/j.wneu.2016.07.011. [Epub ahead of print] PubMed PMID: 27422681.
8)
Puget S, Blauwblomme T, Grill J. Is biopsy safe in children with newly diagnosed diffuse intrinsic pontine glioma? Am Soc Clin Oncol Educ Book. 2012:629-33. doi: 10.14694/EdBook_AM.2012.32.629. PubMed PMID: 24451809.
10)
Amani V, Prince EW, Alimova I, Balakrishnan I, Birks D, Donson AM, Harris P, Levy JM, Handler M, Foreman NK, Venkataraman S, Vibhakar R. Polo-like Kinase 1 as a potential therapeutic target in Diffuse Intrinsic Pontine Glioma. BMC Cancer. 2016 Aug 18;16:647. doi: 10.1186/s12885-016-2690-6. PubMed PMID: 27538997.
11)
Cooney T, Lane A, Bartels U, Bouffet E, Goldman S, Leary SES, Foreman NK, Packer RJ, Broniscer A, Minturn JE, Shih CS, Chintagumpala M, Hassall T, Gottardo NG, Dholaria H, Hoffman L, Chaney B, Baugh J, Doughman R, Leach JL, Jones BV, Fouladi M, Warren KE, Monje M. Contemporary survival endpoints: an International Diffuse Intrinsic Pontine Glioma Registry study. Neuro Oncol. 2017 Sep 1;19(9):1279-1280. doi: 10.1093/neuonc/nox107. PubMed PMID: 28821206.
12)
Plessier A, Dret LL, Varlet P, Beccaria K, Lacombe J, Mériaux S, Geffroy F, Fiette L, Flamant P, Chrétien F, Blauwblomme T, Puget S, Grill J, Debily MA, Castel D. New in vivo avatars of diffuse intrinsic pontine gliomas (DIPG) from stereotactic biopsies performed at diagnosis. Oncotarget. 2017 Feb 2. doi: 10.18632/oncotarget.15002. [Epub ahead of print] PubMed PMID: 28178670.
13)
Puget S, Beccaria K, Blauwblomme T, Roujeau T, James S, Grill J, Zerah M, Varlet P, Sainte-Rose C. Biopsy in a series of 130 pediatric diffuse intrinsic Pontine gliomas. Childs Nerv Syst. 2015 Oct;31(10):1773-80. doi: 10.1007/s00381-015-2832-1. Epub 2015 Sep 9. PubMed PMID: 26351229.
14)
Roujeau T, Machado G, Garnett MR, Miquel C, Puget S, Geoerger B, Grill J, Boddaert N, Di Rocco F, Zerah M, Sainte-Rose C. Stereotactic biopsy of diffuse pontine lesions in children. J Neurosurg. 2007 Jul;107(1 Suppl):1-4. PubMed PMID: 17647306.
diffuse_intrinsic_pontine_glioma.txt · Last modified: 2018/08/09 08:31 by administrador