User Tools

Site Tools


Diffusion tensor imaging for trigeminal neuralgia

Herveh et al. studied the trigeminal nerve in seven healthy volunteers and six patients with trigeminal neuralgia using the diffusion tensor imaging derived parameter fractional anisotropy (FA). While controls did not show a difference between both sides, there was a reduction of FA in the affected nerve in three of six patients with accompanying nerve-vessel conflict and atrophy. Reversibility of abnormally low FA values was demonstrated in one patient successfully treated with microvascular decompression 1).

3T MR diffusion weighted, T1, T2 and FLAIR sequences were acquired for Multiple sclerosis related trigeminal neuralgia MS-TN, TN, and controls. Multi-tensor tractography was used to delineate CN V across cisternal, root entry zone (REZ), pontine and peri-lesional segments. Diffusion metrics including fractional anisotropy (FA), and radial (RD), axial (AD), and mean diffusivities (MD) were measured from each segment.

CN V segments showed distinctive diffusivity patterns. The TN group showed higher FA in the cisternal segment ipsilateral to the side of pain, and lower FA in the ipsilateral REZ segment. The MS-TN group showed lower FA in the ipsilateral peri-lesional segments, suggesting differential microstructural changes along CN V in these conditions.

The study demonstrates objective differences in CN V microstrucuture in TN and MS-TN using non-invasive neuroimaging. This represents a significant improvement in the methods currently available to study pain in MS 2).

The aim of a study was to evaluate the microstructural tissue abnormalities in the trigeminal nerve in symptomatic trigeminal neuralgia not related to neurovascular compression using diffusion tensor imaging. Mean values of the quantitative diffusion parameters of trigeminal nerve, fractional anisotropy and apparent diffusion coefficient, were measured in a group of four symptomatic trigeminal neuralgia patients without neurovascular compression who showed focal non-enhancing T2-hyperintense lesions in the pontine trigeminal pathway. These diffusion parameters were compared between the affected and unaffected sides in the same patient and with four age-matched healthy controls. Cranial magnetic resonance imaging revealed hyperintense lesions in the dorsolateral part of the pons along the central trigeminal pathway on T2-fluid-attenuated inversion recovery sequences. The mean fractional anisotropy value on the affected side was significantly decreased (P = 0.001) compared to the unaffected side and healthy controls. Similarly, the mean apparent diffusion coefficient value was significantly higher (P = 0.001) on the affected side compared to the unaffected side and healthy controls. The cause of trigeminal neuralgia in our patients was abnormal pontine lesions affecting the central trigeminal pathway. The diffusion tensor imaging results suggest that microstructural tissue abnormalities of the trigeminal nerve also exist even in non-neurovascular compression-related trigeminal neuralgia 3).

DTI analysis allows the quantification of structural alterations, even in those patients without any discernible neurovascular contact on MRI. Moreover, our findings support the hypothesis that both the arteries and veins can cause structural alterations that lead to TN. These aspects can be useful for making treatment decisions 4).

The mean diameter of compression arteries (DCA) in NVC patients with TN (1.58 ± 0.34 mm) was larger than that without TN (0.89 ± 0.29 mm). Compared with NVC without TN and HC, the mean values of RD at the site of NVC with TN were significantly increased; however, no significant changes of AD were found between the groups. Correlation analysis showed that DCA positively correlated with radial diffusivity (RD) in NVC patients with and without TN (r = 0.830, p = 0.000). No significant correlation was found between DCA and axial diffusivity (AD) (r = 0.178, p = 0.077).

Larger-diameter compression arteries may increase the chances of TN, and may be a possible facilitating factor for TN 5).

Fractional anisotropy (FA) value quantitatively showed the alteration of trigeminal nerve (TGN) caused by Neurovascular compression (NVC). It provided direct evidence about the effect of NVC which facilitated the diagnosis and surgical decision of Type 2 trigeminal neuralgia (TN) . Besides, significant reduction of FA value may predict an optimistic outcome of microvascular decompression (MVD) 6).

Sophisticated structural MRI techniques including diffusion tensor imaging provide new opportunities to assess the trigeminal nerves and CNS to provide insight into TN etiology and pathogenesis. Specifically, studies have used high-resolution structural MRI methods to visualize patterns of trigeminal nerve-vessel relationships and to detect subtle pathological features at the trigeminal REZ. Structural MRI has also identified CNS abnormalities in cortical and subcortical gray matter and white matter and demonstrated that effective neurosurgical treatment for TN is associated with a reversal of specific nerve and brain abnormalities 7).

Forty-three patients with trigeminal neuralgia were recruited, and diffusion tensor imaging was performed before radiofrequency rhizotomy. By selecting the cisternal segment of the trigeminal nerve manually, they measured the volume of trigeminal nerve, fractional anisotropy, apparent diffusion coefficient, axial diffusivity, and radial diffusivity. The apparent diffusion coefficient and mean value of fractional anisotropy, axial diffusivity, and radial diffusivity were compared between the affected and normal side in the same patient, and were correlated with pre-rhizotomy and post-rhizotomy visual analogue scale pain scores. The results showed the affected side had significantly decreased fractional anisotropy, increased apparent diffusion coefficient and radial diffusivity, and no significant change of axial diffusivity. The volume of the trigeminal nerve on affected side was also significantly smaller. There was a trend of fractional anisotropy reduction and visual analogue scale pain score reduction (P = 0.072). The results suggest that demyelination without axonal injury, and decreased size of the trigeminal nerve, are the microstructural abnormalities of the trigeminal nerve in patients with trigeminal neuralgia caused by neurovascular compression. The application of diffusion tensor imaging in understanding the pathophysiology of trigeminal neuralgia, and predicting the treatment effect has potential and warrants further study 8).

Herweh C, Kress B, Rasche D, Tronnier V, Tröger J, Sartor K, Stippich C. Loss of anisotropy in trigeminal neuralgia revealed by diffusion tensor imaging. Neurology. 2007 Mar 6;68(10):776-8. PubMed PMID: 17339587.
Chen DQ, DeSouza DD, Hayes DJ, Davis KD, O'Connor P, Hodaie M. Diffusivity signatures characterize trigeminal neuralgia associated with multiple sclerosis. Mult Scler. 2016 Jan;22(1):51-63. doi: 10.1177/1352458515579440. PubMed PMID: 25921052.
Neetu S, Sunil K, Ashish A, Jayantee K, Usha Kant M. Microstructural abnormalities of the trigeminal nerve by diffusion-tensor imaging in trigeminal neuralgia without neurovascular compression. Neuroradiol J. 2016 Feb;29(1):13-8. doi: 10.1177/1971400915620439. PubMed PMID: 26678753; PubMed Central PMCID: PMC4978338.
Lutz J, Thon N, Stahl R, Lummel N, Tonn JC, Linn J, Mehrkens JH. Microstructural alterations in trigeminal neuralgia determined by diffusion tensor imaging are independent of symptom duration, severity, and type of neurovascular conflict. J Neurosurg. 2016 Mar;124(3):823-30. doi: 10.3171/2015.2.JNS142587. PubMed PMID: 26406792.
Lin W, Zhu WP, Chen YL, Han GC, Rong Y, Zhou YR, Zhang QW. Large-diameter compression arteries as a possible facilitating factor for trigeminal neuralgia: analysis of axial and radial diffusivity. Acta Neurochir (Wien). 2016 Mar;158(3):521-6. doi: 10.1007/s00701-015-2673-4. PubMed PMID: 26733127; PubMed Central PMCID: PMC4752583.
Chen F, Chen L, Li W, Li L, Xu X, Li W, Le W, Xie W, He H, Li P. Pre-operative declining proportion of fractional anisotropy of trigeminal nerve is correlated with the outcome of micro-vascular decompression surgery. BMC Neurol. 2016 Jul 16;16:106. doi: 10.1186/s12883-016-0620-5. PubMed PMID: 27422267; PubMed Central PMCID: PMC4947245.
DeSouza DD, Hodaie M, Davis KD. Structural Magnetic Resonance Imaging Can Identify Trigeminal System Abnormalities in Classical Trigeminal Neuralgia. Front Neuroanat. 2016 Oct 19;10:95. Review. PubMed PMID: 27807409; PubMed Central PMCID: PMC5070392.
Chen ST, Yang JT, Yeh MY, Weng HH, Chen CF, Tsai YH. Using Diffusion Tensor Imaging to Evaluate Microstructural Changes and Outcomes after Radiofrequency Rhizotomy of Trigeminal Nerves in Patients with Trigeminal Neuralgia. PLoS One. 2016 Dec 20;11(12):e0167584. doi: 10.1371/journal.pone.0167584. PubMed PMID: 27997548.
diffusion_tensor_imaging_for_trigeminal_neuralgia.txt · Last modified: 2016/12/21 18:23 (external edit)