User Tools

Site Tools


diffusion_weighted_magnetic_resonance_imaging

Diffusion weighted magnetic resonance imaging

Diffusion weighted imaging (DWI) is widely appreciated as an indispensable tool in the examination of the central nervous system. It is considered useful not only for the detection of acute ischemic stroke but also for the characterization and differentiation of brain tumors and brain abscess.

DWI exploits the random motion of water molecules. The extent of tissue cellularity and the presence of intact cell membrane help determine the impedance of water molecule diffusion. This impedance of water molecules diffusion can be quantitatively assessed using the apparent diffusion coefficient (ADC) value.

Studies involving coronary artery bypass graft surgery, carotid endarterectomy, or interventional surgery have demonstrated new small ischemic brain lesions using DWI.

Normally water protons have the ability to diffuse extracellularly and loose signal. High intensity on DWI indicates restriction of the ability of water protons to diffuse extracellularly. Restricted diffusion is seen in abscesses, epidermoid cysts and acute infarction (due to cytotoxic edema).

In cerebral abscesses the diffusion is probably restricted due to the viscosity of pus, resulting in a high signal on DWI.

In most tumors there is no restricted diffusion - even in necrotic or cystic components. This results in a normal, low signal on DWI.

MRI of 72-year-old woman admitted because of right hemiparesis. MRI was performed 7 days after onset. T1-weighted imaging revealed multiple low-intensity areas around the ventricle, and both T2-weighted imaging and FLAIR showed an area of severe periventricular hyperintensity with suspected multiple high-intensity lesions. DWI showed a high-intensity area that coincided with clinical features on the left corona radiata.

DWI or MRA conducted immediately after Aneurysm clipping may be affected by artifacts resulting from the surgical procedure, such as intracranial air or motion artifacts from the patient.

DWI was performed using two-dimensional, single-shot, spin-echo, echo planar imaging of the entire brain with the following parameters: echo time (TE), 50; repetition time (TR), infinite; B, 1000 s/mm2; field of view (FOV), 24 × 24 cm; flip angle, 90°; imaging matrix, 128 × 128; slice thickness, 5.5 mm with a 1.5-mm gap; and number of slices, 20. Three- dimensional T1 fast field echo time-of-flight MRA of the circle of Willis was performed using the following parameters: flip angle, 18°; TR, 25 ms; TE, 3.5 ms; slice thickness, 1.2 mm; FOV, 20 × 20; matrix size, 512 × 205; number of slices, 132– 160; slice gap, 0.6 mm.

Any new hyperintensities observed using postoperative DWI were interpreted as new ischemic lesions that developed after aneurysm clipping 1).

Hyperintense lesions

Hyperintense lesions around the resection cavity on magnetic resonance diffusion-weighted imaging (MR-DWI) frequently appear after brain tumor surgery due to the damage of surrounding brain. The putative connection between the lesion and the prognosis for patients with glioblastoma (GBM) was explored in sixty-one patients with newly diagnosed GBM. Postoperative MRI was performed within 2 weeks after the initial surgery.

The cases into two groups depending on whether DWI hyperintense lesions were observed or not [DWI(+) group and DWI(-) group]. Progression-free survival (PFS) and overall survival (OS) were compared between the two groups. Forty-two patients were identified. The various extents of hyperintense lesions around the resection cavity were observed in 28/42 (66.7 %) cases. In the DWI(+) and DWI(-) groups, median PFS was 10.0 [95 % confidence interval (CI) 8.4-11.5] and 6.7 (95 % CI 4.9-8.5) months, respectively (p = 0.042), and median OS was 18.0 (95 % CI 12.2-23.8) and 17.0 (95 % CI 15.7-18.3) months, respectively (p = 0.254). On multivariate analysis, the presence of DWI hyperintense lesion was more likely to be an independent predictor for 6-month PFS (p = 0.019; HR, 0.038; 95 % CI 0.002-0.582). Tumor recurrence appeared outside the former DWI hyperintense lesion. Hyperintense lesions surrounding the resected GBM on MR-DWI might be a favorable prognostic factor in patients with GBM 2).

1)
Murai Y, Adachi K, Matano F, Takagi R, Amano Y, Kobayashi S, Kitamura T, Teramoto A. 3.0-T diffusion images after clipping of middle cerebral artery aneurysm. Turk Neurosurg. 2013;23(6):772-7. doi: 10.5137/1019-5149.JTN.7886-13.1. PubMed PMID: 24310461.
2)
Furuta T, Nakada M, Ueda F, Watanabe T, Arakawa Y, Higashi R, Hashimoto M, Nitta H, Hayashi Y, Hamada JI. Prognostic paradox: brain damage around the glioblastoma resection cavity. J Neurooncol. 2014 Mar 7. [Epub ahead of print] PubMed PMID: 24604751.
diffusion_weighted_magnetic_resonance_imaging.txt · Last modified: 2017/12/12 11:25 by administrador