User Tools

Site Tools



see also cerebrospinal fluid lactate

Experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection 1).

For decades, lactate has been considered an excellent biomarker for oxygen limitation and therefore of organ ischemia.

Experimental evidence suggests that lactate is neuroprotective after acute brain injury; however, data in humans are lacking. We examined whether exogenous lactate supplementation improves cerebral energy metabolism in humans with traumatic brain injury (TBI).

Bouzat et al., prospectively studied 15 consecutive patients with severe TBI monitored with cerebral microdialysis (CMD), brain tissue PO2 (PbtO2), and intracranial pressure (ICP). Intervention consisted of a 3-h intravenous infusion of hypertonic sodium lactate (aiming to increase systemic lactate to ca. 5 mmol/L), administered in the early phase following TBI. We examined the effect of sodium lactate on neurochemistry (CMD lactate, pyruvate, glucose, and glutamate), PbtO2, and ICP.

Treatment was started on average 33 ± 16 h after TBI. A mixed-effects multilevel regression model revealed that sodium lactate therapy was associated with a significant increase in CMD concentrations of lactate [coefficient 0.47 mmol/L, 95% confidence interval (CI) 0.31-0.63 mmol/L], pyruvate [13.1 (8.78-17.4) μmol/L], and glucose [0.1 (0.04-0.16) mmol/L; all p < 0.01]. A concomitant reduction of CMD glutamate [-0.95 (-1.94 to 0.06) mmol/L, p = 0.06] and ICP [-0.86 (-1.47 to -0.24) mmHg, p < 0.01] was also observed.

Exogenous supplemental lactate can be utilized aerobically as a preferential energy substrate by the injured human brain, with sparing of cerebral glucose. Increased availability of cerebral extracellular pyruvate and glucose, coupled with a reduction of brain glutamate and ICP, suggests that hypertonic lactate therapy has beneficial cerebral metabolic and hemodynamic effects after TBI 2).

Forty-six patients with an admission Glasgow coma scale score of ≤13 after resuscitation admitted to a dedicated 10-bed Neurotraumatology Intensive Care Unit were included, and 5305 verified samples of good microdialysis data were analyzed.

Lactate levels were above 2.5 mmol/L in 56.9% of the samples. The relationships between lactate and the LPR could not be adequately modeled by any linear or non-linear model. Neither Cohen's kappa nor Gwet's statistic showed an acceptable agreement between both biomarkers to classify the samples in regard to normal or abnormal metabolism. The dataset was divided into four patterns defined by the lactate concentrations and the LPR. A potential interpretation for these patterns is suggested and discussed. Pattern 4 (low pyruvate levels) was found in 10.7% of the samples and was characterized by a significantly low concentration of brain glucose compared with the other groups.

The study shows that metabolic abnormalities are frequent in the macroscopically normal brain in patients with traumatic brain injuries and a very poor agreement between lactate and the LPR when classifying metabolism. The concentration of lactate in the dialysates must be interpreted while taking into consideration the LPR to distinguish between anaerobic metabolism and aerobic hyperglycolysis 3).

Highly malignant brain tumors harbor the aberrant propensity for aerobic glycolysis, the excessive conversion of glucose to lactic acid even in the presence of ample tissue oxygen. Lactic acid is rapidly effluxed to the tumor microenvironment via a group of plasma-membrane transporters denoted monocarboxylate transporters (MCTs) to prevent “self-poisoning.” One isoform, MCT2, has the highest affinity for lactate and thus should have the ability to respond to microenvironment conditions such as hypoxia, lactate, and pH to help maintain high glycolytic flux in the tumor. Yet, MCT2 is considered to not respond to hypoxia, which is counterintuitive. Its response to tumor lactate has not been reported. In this report, we experimentally identify the transcription initiation site/s for MCT2 in astrocytes (normal) and glioma (tumor). We then use a BACmid library to isolate a 4.2-kbp MCT2 promoter-exon I region and examine promoter response to glycolysis-mediated stimuli in glioma cells. Reporter analysis of nested-promoter constructs indicated response of MCT2 to hypoxia, pH, lactate, and glucose, the major physiological “players” that facilitate a tumor's growth and proliferation. Immunoblot analysis of native MCT2 expression under altered pH and hypoxia reflected the reporter data. The pH-mediated gene-regulation studies we describe are the first to record H+-based reporter studies for any mammalian system and demonstrate the exquisite response of the MCT2 gene to minute changes in tumor pH. Identical promoter usage also provides the first evidence of astrocytes harnessing the same gene regulatory regions to facilitate astrocyte-neuron lactate shuttling, a metabolic feature of normal brain 4).

Patet C, Suys T, Carteron L, Oddo M. Cerebral Lactate Metabolism After Traumatic Brain Injury. Curr Neurol Neurosci Rep. 2016 Apr;16(4):31. doi: 10.1007/s11910-016-0638-5. Review. PubMed PMID: 26898683.
Bouzat P, Sala N, Suys T, Zerlauth JB, Marques-Vidal P, Feihl F, Bloch J, Messerer M, Levivier M, Meuli R, Magistretti PJ, Oddo M. Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med. 2014 Mar;40(3):412-21. doi: 10.1007/s00134-013-3203-6. PubMed PMID: 24477453.
Sahuquillo J, Merino MA, Sánchez-Guerrero A, Arikan F, Vidal-Jorge M, Martínez-Valverde T, Rey A, Riveiro M, Poca MA. Lactate and the Lactate-to-Pyruvate Molar Ratio Cannot Be Used as Independent Biomarkers for Monitoring Brain Energetic Metabolism: A Microdialysis Study in Patients with Traumatic Brain Injuries. PLoS One. 2014 Jul 15;9(7):e102540. doi: 10.1371/journal.pone.0102540. eCollection 2014. PubMed PMID: 25025772.
Caruso JP, Koch BJ, Benson PD, Varughese E, Monterey MD, Lee AE, Dave AM, Kiousis S, Sloan AE, Mathupala SP. pH, Lactate, and Hypoxia: Reciprocity in Regulating High-Affinity Monocarboxylate Transporter Expression in Glioblastoma. Neoplasia. 2017 Jan 13;19(2):121-134. doi: 10.1016/j.neo.2016.12.011. [Epub ahead of print] PubMed PMID: 28092823.
lactate.txt · Last modified: 2017/06/24 14:15 by administrador