User Tools

Site Tools


mesial_temporal_lobe_epilepsy

Mesial temporal lobe epilepsy

Temporal lobe epilepsy (TLE) is a chronic neurological condition characterized by recurrent seizures (epilepsy) which originate in the temporal lobe of the brain. The seizures involve sensory changes, for example smelling an unusual odour that is not there, and disturbance of memory.

Mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) is the most common type of focal epilepsy.

Etiology

The most common cause is mesial temporal sclerosis.

Water homeostasis has been shown crucial for regulation of neuronal excitability. The control of water movement is achieved through a family of small integral membrane channel proteins called aquaporins (AQPs). Despite the fact that changes in water homeostasis occur in sclerotic hippocampi of people with temporal lobe epilepsy (TLE) , the expression of AQPs in the epileptic brain is not fully characterised 1).

Soluble human epoxide hydrolase 2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuro-inflammation in experimental epilepsy models in the current literature 2).

Pathophysiology

In order to understand the pathophysiology of temporal lobe epilepsy (TLE), and thus to develop new pharmacological treatments, in vivo animal models that present features similar to those seen in TLE patients have been developed during the last four decades. Some of these models are based on the systemic administration of chemoconvulsants to induce an initial precipitating injury (status epilepticus) that is followed by the appearance of recurrent seizures originating from limbic structures.

Kainic acid and pilocarpine models, have been widely employed in basic epilepsy research. Their behavioral, electroencephalographic and neuropathologic features and response of these models to antiepileptic drugs and the impact they might have in developing new treatments are explained in the work of Lévesque et al. 3).


The transition to the ictal stage is accompanied by increasing global synchronization and a more ordered spectral content of the signals, indicated by lower spectral entropy. The interictal connectivity imbalance (lower ipsilateral connectivity) is sustained during the seizure, irrespective of any appreciable imbalance in the spectral entropy of the mesial recordings 4).

Diagnosis

Fractional anisotropy asymmetry (FAA) values can be potentially used to identify the seizures of origin of TLE and to help understand the relationship between fiber tracts with the side of seizure origin of TLE 5).

The area of predominant perifocal 18F positron emission tomography hypometabolism and reduced [11C]flumazenil (11C-FMZ) -binding on PET scans is currently considered to contain the epileptogenic zone and corresponds anatomically to the area localizing epileptogenicity in patients with temporal lobe epilepsy (TLE).

Complicactions

Drug resistant epilepsy is a major clinical challenge affecting about 30% of temporal lobe epilepsy (TLE) patients.

The reasons for failure of surgical treatment for mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS) remain unclear.

Treatment

Surgery

see Temporal lobe epilepsy surgery.

Surgical resection is the gold standard treatment for drug-resistant focal epilepsy, including mesial temporal lobe epilepsy (MTLE) and other focal cortical lesions with correlated electrophysiological features.

Surgical approaches for medically refractory mesial temporal lobe epilepsy (MTLE) that previously have been reported include anterior temporal lobectomy (ATL), transcortical selective amygdalohippocampectomy, transsylvian amygdalohippocampectomy, and subtemporal amygdalohippocampectomy.

Each approach has its advantages and potential pitfalls.

Anterior temporal lobectomy

Outcome

After surgery for intractable mesiotemporal lobe epilepsy (mTLE) seizures recur in 30-40%. One predictor for seizure recurrence is the distribution of seizure onset and interictal epileptiform discharges (IED).

Preoperative bilateral ictal foci are a negative predictor for seizure outcome. Contrarily, IED exceeding the affected temporal lobe in the ipsilateral hemisphere or even bilateral IED had favorable seizure outcome if seizure onset is strictly limited to the affected temporal lobe. Reoperation for seizure persistence constitutes a promising therapeutic option 6).


The extent of pre-surgical perifocal PET abnormalities, the extent of their resection, and the extent of non-resected abnormalities were not useful predictors of individual freedom from seizures in patients with TLE 7).

Case series

2017

The hippocampi of 72 right-handed patients were collected and prepared for histopathological examination. Hippocampal sclerosis patterns were determined, and neuronal cell density was calculated. Preoperatively, two verbal and two visual memory tests (immediate and delayed recalls) were applied, and patients were divided into two groups, left and right MTLE (36/36).

There were no statistical differences between groups regarding demographic and clinical data. Cornu Ammonis 4 (CA4) neuronal density was significantly lower in the right hippocampus compared with the left (p=0.048). The groups with HS presented different memory performance - the right HS were worse in visual memory test [Complex Rey Figure, immediate (p=0.001) and delayed (p=0.009)], but better in one verbal task [RAVLT delayed (p=0.005)]. Multiple regression analysis suggested that the verbal memory performance of the group with left HS was explained by CA1 neuronal density since both tasks were significantly influenced by CA1 [Logical Memory immediate recall (p=0.050) and Logical Memory and RAVLT delayed recalls (p=0.004 and p=0.001, respectively)]. For patients with right HS, both CA1 subfield integrity (p=0.006) and epilepsy duration (p=0.012) explained Complex Rey Figure immediate recall performance. Ultimately, epilepsy duration also explained the performance in the Complex Rey Figure delayed recall (p<0.001).

Cornu Ammonis 1 (CA1) hippocampal subfield was related to immediate and delayed recalls of verbal memory tests in left HS, while CA1 and epilepsy duration were associated with visual memory performance in patients with right HS 8).


Seizure, cognitive, and psychiatric outcomes were reviewed after 389 surgeries performed between 1990 and 2015 on patients aged 15-67 years at a tertiary center. Three surgical approaches were used: anterior temporal lobectomy (ATL; n = 209), transcortical selective amygdalohippocampectomy (SAH; n = 144), and transsylvian SAH (n = 36).

With an average follow-up of 8.7 years (range = 1.0-25.2), seizure outcome was classified as Engel I in 83.7% and Engel Ia in 57.1% of patients. The histological classification of HS was type 1 for 75.3% of patients, type 2 for 18.7%, and type 3 for 1.2%. Two factors were significantly associated with seizure recurrence: past history of status epilepticus and preoperative intracranial electroencephalographic recording. In contrast, neither HS type, the presence of a dual pathology, nor surgical approach was associated with seizure outcome. Risk of cognitive impairment was 3.12 (95% confidence interval = 1.27-7.70), greater in patients after ATL than in patients after transcortical SAH. A presurgical psychiatric history and postoperative cognitive impairment were associated with poor psychiatric outcome.

The SAH and ATL approaches have similar beneficial effects on seizure control, whereas transcortical SAH tends to minimize cognitive deterioration after surgery. Variation in postsurgical outcome with the class of HS should be investigated further 9).

2016

A certain number of patients suffer significant decline in verbal memory after hippocampectomy. To prevent this disabling complication, a reliable test for predicting postoperative memory decline is greatly desired. Therefore, Tani et al., assessed the value of electrical stimulation of the parahippocampal gyrus (PHG) as a provocation test of verbal memory decline after hippocampectomy on the dominant side.

Eleven right-handed, Japanese-speaking patients with medically intractable left temporal lobe epilepsy (TLE) participated in the study. Before surgery, they underwent provocative testing via electrical stimulation of the left PHG during a verbal encoding task. Their pre- and posthippocampectomy memory function was evaluated according to the Wechsler Memory Scale-Revised (WMS-R) and/or Mini-Mental State Examination (MMSE) before and 6 months after surgery. The relationship between postsurgical memory decline and results of the provocative test was evaluated.

Left hippocampectomy was performed in 7 of the 11 patients. In 3 patients with a positive provocative recognition test, verbal memory function, as assessed by the WMS-R, decreased after hippocampectomy, whereas in 4 patients with a negative provocative recognition test, verbal memory function, as assessed by the WMS-R or MMSE, was preserved.

Results of the present study suggest that electrical stimulation of the PHG is a reliable provocative test to predict posthippocampectomy verbal memory decline 10).

2001

Eighty patients with temporal lobe epilepsy were randomly assigned to surgery (40 patients) or treatment with antiepileptic drugs for one year (40 patients). Optimal medical therapy and primary outcomes were assessed by epileptologists who were unaware of the patients' treatment assignments. The primary outcome was freedom from seizures that impair awareness of self and surroundings. Secondary outcomes were the frequency and severity of seizures, the quality of life, disability, and death.

At one year, the cumulative proportion of patients who were free of seizures impairing awareness was 58 percent in the surgical group and 8 percent in the medical group (P<0.001). The patients in the surgical group had fewer seizures impairing awareness and a significantly better quality of life (P<0.001 for both comparisons) than the patients in the medical group. Four patients (10 percent) had adverse effects of surgery. One patient in the medical group died.

In temporal-lobe epilepsy, surgery is superior to prolonged medical therapy. Randomized trials of surgery for epilepsy are feasible and appear to yield precise estimates of treatment effects 11).

1)
Salman MM, Sheilabi MA, Bhattacharyya D, Kitchen P, Conner AC, Bill RM, Woodroofe MN, Conner MT, Princivalle AP. Transcriptome analysis suggests a role for the differential expression of cerebral aquaporins and the MAPK signalling pathway in human temporal lobe epilepsy. Eur J Neurosci. 2017 Jul 17. doi: 10.1111/ejn.13652. [Epub ahead of print] PubMed PMID: 28715131.
2)
Ahmedov ML, Kemerdere R, Baran O, Inal BB, Gumus A, Coskun C, Yeni SN, Eren B, Uzan M, Tanriverdi T. Tissue Expressions of Soluble Human Epoxide Hydrolase-2 Enzyme in Patients with Temporal Lobe Epilepsy. World Neurosurg. 2017 Jun 29. pii: S1878-8750(17)31032-X. doi: 10.1016/j.wneu.2017.06.137. [Epub ahead of print] PubMed PMID: 28669871.
3)
Lévesque M, Avoli M, Bernard C. Animal Models of temporal Lobe Epilepsy Following Systemic Chemoconvulsant Administration. J Neurosci Methods. 2015 Mar 10. pii: S0165-0270(15)00091-6. doi: 10.1016/j.jneumeth.2015.03.009. [Epub ahead of print] PubMed PMID: 25769270.
4)
Vega-Zelaya L, Pastor J, de Sola RG, Ortega GJ. Disrupted Ipsilateral Network Connectivity in Temporal Lobe Epilepsy. PLoS One. 2015 Oct 21;10(10):e0140859. doi: 10.1371/journal.pone.0140859. eCollection 2015. PubMed PMID: 26489091.
5)
Li H, Xue Z, Dulay MF Jr, Verma A, Karmonik C, Grossman RG, Wong ST. Fractional anisotropy asymmetry and the side of seizure origin for partial onset-temporal lobe epilepsy. Comput Med Imaging Graph. 2014 Jul 2. pii: S0895-6111(14)00102-5. doi: 10.1016/j.compmedimag.2014.06.009. [Epub ahead of print] PubMed PMID: 25037096.
6)
Schmeiser B, Zentner J, Steinhoff BJ, Brandt A, Schulze-Bonhage A, Kogias E, Hammen T. The role of presurgical EEG parameters and of reoperation for seizure outcome in temporal lobe epilepsy. Seizure. 2017 Sep 6;51:174-179. doi: 10.1016/j.seizure.2017.08.015. [Epub ahead of print] PubMed PMID: 28888215.
7)
Stanišić M, Coello C, Ivanović J, Egge A, Danfors T, Hald J, Heminghyt E, Mikkelsen MM, Krossnes BK, Pripp AH, Larsson PG. Seizure outcomes in relation to the extent of resection of the perifocal fluorodeoxyglucose and flumazenil PET abnormalities in anteromedial temporal lobectomy. Acta Neurochir (Wien). 2015 Sep 8. [Epub ahead of print] PubMed PMID: 26350516.
8)
Comper SM, Jardim AP, Corso JT, Gaça LB, Noffs MHS, Lancellotti CLP, Cavalheiro EA, Centeno RS, Yacubian EMT. Impact of hippocampal subfield histopathology in episodic memory impairment in mesial temporal lobe epilepsy and hippocampal sclerosis. Epilepsy Behav. 2017 Sep 2;75:183-189. doi: 10.1016/j.yebeh.2017.08.013. [Epub ahead of print] PubMed PMID: 28873362.
9)
Mathon B, Bielle F, Samson S, Plaisant O, Dupont S, Bertrand A, Miles R, Nguyen-Michel VH, Lambrecq V, Calderon-Garcidueñas AL, Duyckaerts C, Carpentier A, Baulac M, Cornu P, Adam C, Clemenceau S, Navarro V. Predictive factors of long-term outcomes of surgery for mesial temporal lobe epilepsy associated with hippocampal sclerosis. Epilepsia. 2017 Jun 28. doi: 10.1111/epi.13831. [Epub ahead of print] PubMed PMID: 28656696.
10)
Tani N, Kishima H, Khoo HM, Yanagisawa T, Oshino S, Maruo T, Hosomi K, Hirata M, Kazui H, Nomura KT, Aly MM, Kato A, Yoshimine T. Electrical stimulation of the parahippocampal gyrus for prediction of posthippocampectomy verbal memory decline. J Neurosurg. 2016 Nov;125(5):1053-1060. PubMed PMID: 26771851.
11)
Wiebe S, Blume WT, Girvin JP, Eliasziw M; Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001 Aug 2;345(5):311-8. PubMed PMID: 11484687.
mesial_temporal_lobe_epilepsy.txt · Last modified: 2017/09/11 08:22 by administrador