User Tools

Site Tools


Ophthalmic artery aneurysm surgery


Neurosurgery Service, Alicante University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL - FISABIO Foundation), Alicante, Spain.

The key features of successful surgical treatment of these lesions include establishing control of the proximal artery, adequate exposure of the aneurysm neck, and successful obliteration of the aneurysm with minimal manipulation of the optic nerve 1).

The ophthalmic artery aneurysms can treated safe and effective through a frontolateral approach 2).

The most important risk associated with clipping ophthalmic artery aneurysms is a new visual deficit. Meticulous microsurgical technique is necessary during anterior clinoidectomy, aneurysm dissection, and clip application to optimize visual outcomes, and aggressive medical management postoperatively might potentially decrease the incidence of delayed visual deficits. As the results of endovascular therapy and specifically flow diverters become known, they warrant comparison with these surgical benchmarks to determine best practices 3).

For ophthalmic artery aneurysm treatment if necessary, the ophthalmic artery may be sacrificed without worsening of vision in the vast majority.

Surgery is technically demanding because these aneurysms are often large and may extend into the cavernous sinus 4) 5) 6) 7) 8) 9).

The anterior clinoid process (ACP) interferes with clipping. It is necessary to remove the ACP followed by optic canal unroofing to expose the ophthalmic segment aneurysm. The ACP resection can be performed intradurally or extradurally. The proponents of extradural clinoidectomy maintain that the dural layer protects the brain and cortical vessels during the drilling, and prevents bone dust and bleeding into the subarachnoid space 10).

By contrast, intradural clinoidectomy provides a clear view of the ACP, ICA, and optic nerve, which are protected during clinoidectomy 11).

For unruptured intracranial aneurysm, drill off anterior clinoid process via an extradural approach before opening dura to approach aneurysm neck maybe safe. Not for ruptured.

Care must be taken to avoid optic nerve injury caused by the retraction and/or the heat of the drill 12).

Cutting the falciform ligament early decompresses the optic nerve, and helps minimize worsening of visual impairment from surgical manipulation.

In most cases, a side angled clip can be placed paralell to the parent artery along the neck of the aneurysm 13).

Contralateral approach

Case series


Kamide et al. retrospectively reviewed results from microsurgical clipping of 208 OphA aneurysms in 198 patients.

Patient demographics, aneurysm morphology, clinical characteristics, and patient outcomes were recorded and analyzed.

Despite 20% of these aneurysms being large or giant in size, complete aneurysm occlusion was accomplished in 91% of 208 cases, with OphA patency preserved in 99.5%. The aneurysm recurrence rate was 3.1% and the retreatment rate was 0%.

Good outcomes (modified Rankin Scale score 0-2) were observed in 96.2% of patients overall and in all 156 patients with unruptured aneurysms. New visual field defects (hemianopsia or quadrantanopsia) were observed in 8 patients (3.8%), decreased visual acuity in 5 (2.4%), and monocular blindness in 9 (4.3%). Vision improved in 9 (52.9%) of the 17 patients with preoperative visual deficits.

The most important risk associated with clipping OphA aneurysms is a new visual deficit. Meticulous microsurgical technique is necessary during anterior clinoidectomy, aneurysm dissection, and clip application to optimize visual outcomes, and aggressive medical management postoperatively might potentially decrease the incidence of delayed visual deficits. As the results of endovascular therapy and specifically flow diverters become known, they warrant comparison with these surgical benchmarks to determine best practices 14).


The clinical data of 95 patients with carotid ophthalmic artery aneurysms treated via frontolateral approach in the last 1.5 years in Beijing Tiantan Hospital and Beijing Anzhen Hospital were analyzed retrospectively.Before the operation, digital subtraction angiogram (DSA) was performed among all patients.The patients were divided into two groups by the lateral approach.According to preoperative classification, surgical characteristics and prognosis were summarized.

Ninety-five cases of ophthalmic aneurysms were divided into type Ⅰ of 44 cases (46.3%), type Ⅱ of 34 cases (35.7%) and type Ⅲ of 17cases (17.9%), according to the results of DSA.The diameter of aneurysm was <10 mm (35 cases), 10-25 mm (34 cases), and >25 mm (26 cases). In the 17 cases of subarachnoid hemorrhage (SAH), 8 cases were ruptured carotid-ophthalmic artery aneurysms.Among those 95 patients, 93 were clipped successfully, 2 was trapped.Multiple aneurysms in 5 cases were treated in one surgical session through the same approach.No aneurysm residual was found after postoperative CTA review.Ipsilateral vision of 3 cases were decline.Cerebral infarction was appeared in 9 cases.All the others had a good recovery.

The carotid-ophthalmic artery aneurysms could be well exposed. Microsurgery through frontolateral approach has the advantages such as minimal invasion, less effect on the patients' look and simple procedure.The frontolateral approach is safe and effective in surgery for ophthalmic segment of the internal carotid artery aneurysms 15).


Seventy-eight consecutive patients with 88 ophthalmic segment aneurysms were admitted to the Department of Neurosurgery, University of Cincinnati College of Medicine, Ohio, USA, from January 1997 to June 2003. Forty-three patients presented with unruptured aneurysms and 35 presented with subarachnoid hemorrhage (SAH). Management strategies included surgical clipping alone in 53 patients, clipping and hemicraniectomy in 2, coiling in 17, external carotid artery-middle cerebral artery (ECA/MCA) by-pass in 2, and coil occlusion of the internal carotid artery in 2. Two patients underwent no treatment.

In the group of 41 treated patients with unruptured aneurysms, 40 (97.6%) had good outcomes (GOS 1-2) and 1 patient had poor (GOS 3) outcome at discharge. Procedure-related morbidity was 15.7% (8/51 procedures), and permanent morbidity was 9.75% (4/41 patients). In the 35 patients who presented with SAH, mortality was 14.3% (5 patients); at discharge, 21 patients (60%) had good (GOS 1-2) and 9 (25.7%) poor (GOS 3) outcomes. The overall outcome was good (GOS 1-2) in 63 patients (80.8%) and poor (GOS 3-4) in 10 patients (12.8%). Overall mortality was 6.4% (5 patients all with SAH).

Direct obliteration of the aneurysm utilizing advanced surgical techniques is the preferred treatment approach, whenever possible. In case of unclippable large or giant aneurysms, the surgical or endovascular occlusion of the proximal internal carotid artery with or without an extracranial-intracranial by-pass is an option. A highly skilled team including a cerebrovascular and an endovascular surgeon is essential to achieve good outcomes in treating these lesions 16).

Case reports


The patient's arteriogram revealed a wide-necked aneurysm of the right ophthalmic artery, an irregular aneurysm of the anterior communicating artery, and a basilar artery aneurysm. The surgical intervention for these aneurysms is a challenge because of the complex anatomical relationship with the surrounding structures. The 3 aneurysms, which were not amenable to a single intervention, were successfully clipped in 1 incision.

After surgery, the patient reported feeling well. One year after surgery, the patient had no SAH recurrence.

Occasionally, surgical treatment was used even for aneurysms of the carotid-ophthalmic artery with aneurysms of anterior communicating artery and basilar artery, which are contraindicated for interventional therapy 17).


Rustemi et al. illustrated the first case of indocyanine green videoangiography (ICG-VA) application in an optic penetrating ophthalmic artery aneurysm treatment. A 57-year-old woman presented with temporal hemianopsia, slight right visual acuity deficit, and new onset of headache. The cerebral angiography detected a right ophthalmic artery aneurysm medially and superiorly projecting. The A1 tract of the ipsilateral anterior cerebral artery was elevated and curved, being suspicious for an under optic aneurysm growth. Surgery was performed. Initially the aneurysm was not visible. ICG-VA permitted the transoptic aneurysm visualization. After optic canal opening, the aneurysm was clipped and transoptic ICG-VA confirmed the aneurysm occlusion. ICG-VA showed also the slight improvement of the optic nerve pial vascularization. Postoperatively, the visual acuity was 10/10 and the hemianopsia did not worsen.

The elevation and curve of the A1 tract in medially and superiorly projecting ophthalmic aneurysms may be an indirect sign of under optic growth, or optic splitting aneurysms. ICG-VA transoptic aneurysm detection and occlusion confirmation reduces the surgical maneuvers on the optic nerve, contributing to function preservation 18).

Batjer HH, Kopitnik TA, Giller CA, Samson DS. Surgery for paraclinoidal carotid artery aneurysms. J Neurosurg. 1994 Apr;80(4):650-8. PubMed PMID: 8151343.
2) , 15)
Wang JT, Kan ZS, Wang S. [Surgical management of ophthalmic artery aneurysms via minimally invasive frontolateral approach]. Zhonghua Yi Xue Za Zhi. 2017 Apr 18;97(15):1179-1183. doi: 10.3760/cma.j.issn.0376-2491.2017.15.014. Chinese. PubMed PMID: 28427127.
3) , 14)
Kamide T, Tabani H, Safaee MM, Burkhardt JK, Lawton MT. Microsurgical clipping of ophthalmic artery aneurysms: surgical results and visual outcomes with 208 aneurysms. J Neurosurg. 2018 Jan 26:1-11. doi: 10.3171/2017.7.JNS17673. [Epub ahead of print] PubMed PMID: 29372879.
Hosobuchi Y. Direct surgical treatment of giant intracranial aneurysms. J Neurosurg. 1979;51(6):743–756.
Sundt T M Jr, Piepgras D G. Surgical approach to giant intracranial aneurysms. Operative experience with 80 cases. J Neurosurg. 1979;51(6):731–742.
Almeida G M, Shibata M K, Bianco E. Carotid-ophthalmic aneurysms. Surg Neurol. 1976;5(1):41–45.
Kattner K A, Bailes J, Fukushima T. Direct surgical management of large bulbous and giant aneurysms involving the paraclinoid segment of the internal carotid artery: report of 29 cases. Surg Neurol. 1998;49(5):471–480.
Nutik S L. Ventral paraclinoid carotid aneurysms. J Neurosurg. 1988;69(3):340–344.
Nutik S. Carotid paraclinoid aneurysms with intradural origin and intracavernous location. J Neurosurg. 1978;48(4):526–533
10) , 16)
Beretta F, Andaluz N, Zuccarello M. Aneurysms of the ophthalmic (C6) segment of the internal carotid artery: treatment options and strategies based on a clinical series. J Neurosurg Sci. 2004 Dec;48(4):149-56. PubMed PMID: 15876983.
11) , 17)
Wang J, Kan Z, Wang S. Microsurgical treatment of carotid-ophthalmic aneurysm associated with multiple anterior and posterior circulation aneurysms: A case report. Medicine (Baltimore). 2017 Apr;96(16):e6672. doi: 10.1097/MD.0000000000006672. PubMed PMID: 28422878; PubMed Central PMCID: PMC5406094.
Kumon Y, Sakaki S, Kohno K, Ohta S, Ohue S, Oka Y. Asymptomatic, unruptured carotid-ophthalmic artery aneurysms: angiographical differentiation of each type, operative results, and indications. Surg Neurol. 1997 Nov;48(5):465-72. PubMed PMID: 9352810.
Day AL. Clinicoanatomic features of supraclinoid aneurysms. Clin Neurosurg. 1990;36:256-74. Review. PubMed PMID: 2403885.
Rustemi O, Cester G, Causin F, Scienza R, Della Puppa A. Indocyanine Green Videoangiography Transoptic Visualization and Clipping Confirmation of an Optic Splitting Ophthalmic Artery Aneurysm. World Neurosurg. 2016 Jun;90:705.e5-705.e8. doi: 10.1016/j.wneu.2016.03.010. Epub 2016 Mar 12. PubMed PMID: 26979923.
ophthalmic_artery_aneurysm_surgery.txt · Last modified: 2018/02/10 10:00 by administrador