User Tools

Site Tools


Spontaneous intracerebral hemorrhage

Spontaneous intracerebral hemorrhage (ICH), is nontraumatic bleeding into the brain parenchyma.


Spontaneous intracerebral hemorrhage (ICH) is a global public health issue and accounts for 10–15% of all stroke cases 1).

It is the second most common subtype of stroke, with 5.3 million cases and over 3 million deaths reported worldwide in 2010.

In 2001 the annual incidence of 20–30 per 1,000,000 people 2).


The most important modifiable risk factor in spontaneous ICH is chronic arterial hypertension:

see Hypertensive intracerebral hemorrhage.

Besides hypertension, cerebrovascular amyloid deposition (i.e., cerebral amyloid angiopathy) is associated with ICH in older patients.

It is a common initial symptom of intracranial vascular malformations.

see Spontaneous intracranial hematoma caused by neoplasm

Coagulopathies (i.e., the use of antithrombotic or thrombolytic agents, congenital or acquired factor deficiencies) and systemic diseases, such as thrombocytopenia, are possible causes of ICH. The use of oral anticoagulants, especially vitamin K inhibitors (i.e., warfarin), has increased coagulopathy-associated ICH in recent years, accounting for more than 15 % of all cases

see Intracerebral hemorrhage and anticoagulation

see Intracerebral hemorrhage and ruptured intracranial aneurysm.

Psychosocial, ethnic, and economic factors play a role in the prevalence of cerebral hemorrhage, with ICH being twice as common in low-income and middle-income countries compared with high-income countries. Other identified risk factors for ICH include age (i.e., each decade from 50 years of age is associated with a 2-fold increase in the incidence of ICH) and an elevated alcohol intake.

Etiologies of ICH to always consider include: intracranial aneurysms (typically presenting as subarachnoid hemorrhage); arteriovenous malformations (ICH is the first presentation of AVMs in 60 % of cases); cerebral venous sinus thrombosis and venous infarction; brain tumors (<5 % of all ICH cases) including cerebral metastasis (e.g., lung cancer, melanoma, renal cell carcinoma, thyroid carcinoma, and choriocarcinoma) and primary CNS tumors (e.g., glioblastoma multiforme and oligodendrogliomas); and drugs of abuse (e.g., cocaine, amphetamines). Because of the differing etiologies of ICH, a rapid and accurate diagnosis of the underlying etiology of ICH is essential to direct appropriate management strategies.

cerebral venous sinus thrombosis and venous infarction.


Although CT remains important in the acute setting, MR imaging has proved invaluable for diagnosis and characterization of intracranial hemorrhage.

Hemorrhage volume is a powerful predictor of 30-day mortality after spontaneous intracerebral hemorrhage (ICH). Kothari et al., compared a bedside method of measuring CT ICH volume with measurements made by computer-assisted planimetric image analysis.

see Intracerebral hemorrhage volume


Although several studies have been conducted in recent years, the optimal treatment for improving outcome in spontaneous ICH patients is still unclear 3) 4) 5) 6).

Recent clinical trials examining hemostatic therapy, blood pressure control, and hematoma evacuation have advanced our understanding of ICH management. Timely and aggressive management in the acute phase may mitigate secondary brain injury. The initial management should include: initial medical stabilization; rapid, accurate neuroimaging to establish the diagnosis and elucidate an etiology; standardized neurologic assessment to determine baseline severity; prevention of hematoma expansion (blood pressure management and reversal of coagulopathy); consideration of early surgical intervention; and prevention of secondary brain injury 7).

The choice of surgical or conservative treatment for patients with spontaneous intracerebral hemorrhage (ICH) is controversial.

Blood pressure reduction

The Second Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial (INTERACT 2) study, demonstrated better functional outcomes with no harm for patients with acute spontaneous intracerebral hemorrhage (ICH) within 6 h of onset who received target-driven, early intensive BP lowering (systolic BP target <140 mmHg within 1 h, continued for 7 days) and suggested that greater and faster reduction in BP might enhance the treatment effect by limiting hematoma growth.

Optimal recovery from intracerebral hemorrhage was observed in hypertensive patients who achieved the greatest SBP reductions (≥20 mm Hg) in the first hour and maintained for 7 days 8).



Patients with spontaneous ICH have high mortality and poor outcome. It is the most serious, least treatable and more variable in incidence and management compared to other stroke subtypes 9) 10).

Although this is a heterogeneous disorder with a wide range of outcomes, overall mortality at 1 month is approximately 40%, and only 25% of patients have a favorable outcome 11) 12).

Case fatality is extremely high (reaching approximately 60 % at 1 year post event). Only 20 % of patients who survive are independent within 6 months.


Hematoma expansion is an important determinant of outcome in spontaneous intracerebral hemorrhage (ICH) due to small vessel disease (SVD).

Acute hydrocephalus

Case series

418 consecutive patients admitted with primary lobar hemorrhage or deep ICH to a single tertiary care medical center between January 1, 2000, and October 1, 2012. Data were analyzed on March 4, 2016. Participants were consecutive patients with computed tomographic images allowing ICH volume calculation and MRI allowing imaging markers of small vessel disease (SVD).

The ICH volumes at baseline and within 48 hours after symptom onset were measured in 418 patients with spontaneous ICH without anticoagulant therapy, and hematoma expansion was calculated. Cerebral microbleeds, cortical superficial siderosis, and white matter hyperintensity volume were assessed on MRI. The associations between these SVD markers and ICH volume, as well as hematoma expansion, were investigated using multivariable models.

This study analyzed 254 patients with lobar ICH (mean [SD] age, 75 [11] years and 140 [55.1%] female) and 164 patients with deep ICH (mean [SD] age 67 [14] years and 71 [43.3%] female). The presence of cortical superficial siderosis was an independent variable associated with larger ICH volume in the lobar ICH group (odds ratio per quintile increase in final ICH volume, 1.49; 95% CI, 1.14-1.94; P = .004). In multivariable models, the absence of cerebral microbleeds was associated with larger ICH volume for both the lobar and deep ICH groups (odds ratios per quintile increase in final ICH volume, 1.41; 95% CI, 1.11-1.81; P = .006 and 1.43; 95% CI, 1.04-1.99; P = .03; respectively) and with hematoma expansion in the lobar ICH group (odds ratio, 1.70; 95% CI, 1.07-2.92; P = .04). The white matter hyperintensity volumes were not associated with either hematoma volume or expansion.

In patients admitted with primary lobar or deep ICH to a single tertiary care medical center, the presence of cortical superficial siderosis was an independent variable associated with larger lobar ICH volume, and the absence of cerebral microbleeds was associated with larger lobar and deep ICHs. The absence of cerebral microbleeds was independently associated with more frequent hematoma expansion in patients with lobar ICH. Boulouis et al., provide an analytical framework for future studies aimed at limiting hematoma expansion 13).


Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009 May 9;373(9675):1632-44. doi: 10.1016/S0140-6736(09)60371-8. Review. PubMed PMID: 19427958; PubMed Central PMCID: PMC3138486.
Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;14:1450–1460. doi: 10.1056/NEJM200105103441907.
Hanley DF, Thompson RE, Muschelli J, Rosenblum M, McBee N, Lane K, Bistran-Hall AJ, Mayo SW, Keyl P, Gandhi D, Morgan TC, Ullman N, Mould WA, Carhuapoma JR, Kase C, Ziai W, Thompson CB, Yenokyan G, Huang E, Broaddus WC, Graham RS, Aldrich EF, Dodd R, Wijman C, Caron JL, Huang J, Camarata P, Mendelow AD, Gregson B, Janis S, Vespa P, Martin N, Awad I, Zuccarello M; MISTIE Investigators. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): a randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016 Nov;15(12):1228-1237. doi: 10.1016/S1474-4422(16)30234-4. Epub 2016 Oct 11. PubMed PMID: 27751554; PubMed Central PMCID: PMC5154627.
Hanley DF, Lane K, McBee N, Ziai W, Tuhrim S, Lees KR, Dawson J, Gandhi D, Ullman N, Mould WA, Mayo SW, Mendelow AD, Gregson B, Butcher K, Vespa P, Wright DW, Kase CS, Carhuapoma JR, Keyl PM, Diener-West M, Muschelli J, Betz JF, Thompson CB, Sugar EA, Yenokyan G, Janis S, John S, Harnof S, Lopez GA, Aldrich EF, Harrigan MR, Ansari S, Jallo J, Caron JL, LeDoux D, Adeoye O, Zuccarello M, Adams HP Jr, Rosenblum M, Thompson RE, Awad IA; CLEAR III Investigators. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet. 2017 Feb 11;389(10069):603-611. doi: 10.1016/S0140-6736(16)32410-2. Epub 2017 Jan 10. PubMed PMID: 28081952.
Vespa P, Hanley D, Betz J, Hoffer A, Engh J, Carter R, Nakaji P, Ogilvy C, Jallo J, Selman W, Bistran-Hall A, Lane K, McBee N, Saver J, Thompson RE, Martin N; ICES Investigators. ICES (Intraoperative Stereotactic Computed Tomography-Guided Endoscopic Surgery) for Brain Hemorrhage: A Multicenter Randomized Controlled Trial. Stroke. 2016 Nov;47(11):2749-2755. Epub 2016 Oct 6. PubMed PMID: 27758940.
Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, Fung GL, Goldstein JN, Macdonald RL, Mitchell PH, Scott PA, Selim MH, Woo D; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2015 Jul;46(7):2032-60. doi: 10.1161/STR.0000000000000069. Epub 2015 May 28. PubMed PMID: 26022637.
de Oliveira Manoel AL, Goffi A, Zampieri FG, Turkel-Parrella D, Duggal A, Marotta TR, Macdonald RL, Abrahamson S. The critical care management of spontaneous intracranial hemorrhage: a contemporary review. Crit Care. 2016 Sep 18;20(1):272. Review. PubMed PMID: 27640182.
Wang X, Arima H, Heeley E, Delcourt C, Huang Y, Wang J, Stapf C, Robinson T, Woodward M, Chalmers J, Anderson CS. Magnitude of Blood Pressure Reduction and Clinical Outcomes in Acute Intracerebral Hemorrhage: Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial Study. Hypertension. 2015 Mar 23. pii: HYPERTENSIONAHA.114.05044. [Epub ahead of print] PubMed PMID: 25801872.
Van Asch CJ, Luitse MJ, Rinkel GJ, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 2010;9:167–76.
Krishnamurthi RV, Feigin VL, Forouzanfar MH, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health 2013;1:e259–81.
van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9(2):167–176.
Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2(1):43–53.
Boulouis G, van Etten ES, Charidimou A, Auriel E, Morotti A, Pasi M, Haley KE, Brouwers HB, Ayres AM, Vashkevich A, Jessel MJ, Schwab KM, Viswanathan A, Greenberg SM, Rosand J, Goldstein JN, Gurol ME. Association of Key Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease With Hematoma Volume and Expansion in Patients With Lobar and Deep Intracerebral Hemorrhage. JAMA Neurol. 2016 Oct 10. doi: 10.1001/jamaneurol.2016.2619. PubMed PMID: 27723863.
spontaneous_intracerebral_hemorrhage.txt · Last modified: 2018/01/22 08:33 by administrador