User Tools

Site Tools


5 aminolevulinic acid fluorescence guided resection of glioma

5-ALA-based fluorescence guided surgery has been shown to be a safe and effective method to improve intraoperative visualization and resection of malignant gliomas. However, it remains ineffective in guiding the resection of lower-grade, non-enhancing, and deep-seated tumors, mainly because these tumors do not produce detectable fluorescence with conventional visualization technologies, namely, wide-field (WF) surgical microscope. The introduction of fluorescence guided resection (FGS) represents one of the most important advances in the neurosurgical treatment of brain tumors.

5 aminolevulinic acid fluorescence guided resection permits the intraoperative visualization of malignant glioma tissue and supports the neurosurgeon with real-time guidance for differentiating tumor from normal brain that is independent of neuronavigation and brain shift.

Wei et al., describe some of the main factors that limit the sensitivity and accuracy of conventional WF surgical microscopy, and then provide a survey of commercial and research prototypes being developed to address these challenges, along with their principles, advantages and disadvantages, as well as the current status of clinical translation for each technology. They also provide a neurosurgical perspective on how these visualization technologies might best be implemented for guiding glioma surgeries in the future

Detection of PpIX expression in low-grade gliomas and at the infiltrative margins of all gliomas has been achieved with high-sensitivity probe-based visualization techniques. Deep-tissue PpIX imaging of up to 5 mm has also been achieved using red-light illumination techniques. Spectroscopic approaches have enabled more accurate quantification of PpIX expression.

Advancements in visualization technologies have extended the sensitivity and accuracy of conventional WF surgical microscopy. These technologies will continue to be refined to further improve the extent of resection in glioma patients using 5-ALA-induced fluorescence 1).

The 5 aminolevulinic acid has been used in glioma surgery and recent studies applied in Sylvian and spinal meningiomas 2) 3).

see 5 aminolevulinic acid fluorescence guided resection of high grade glioma

see 5 aminolevulinic acid fluorescence guided resection of low grade glioma

Schebesch et al., from the University Medical Center Regensburg, Germany published five patients (3 female, 2 male; mean age 45.4 years) who underwent fluorescence-guided surgery for supratentorial, intracerebral lesions which showed no contrast-enhancement in the preoperative MRI but were, however, strongly suspicious for gliomas. Accordingly, all patients received a preoperative FET-PET scan and detailed histopathological workup was performed. After giving written informed consent, all patients received 5 mg/kg of FL at the induction of anesthesia. Surgery was conducted under white light and under the YELLOW 560 nm filter. We reviewed the surgical protocols, navigational storage and the image databases of our surgical microscopes for evidence of intraoperative fluorescence that corresponded to the FET-PET positive area.

In all patients they found distinct accordances between the FET-PET positive areas and the fluorescing regions within the targeted lesions. Histopathological workup of the fluorescent tissue revealed anaplastic oligodendroglioma, IDH-mutant and 1p/19-codeleted (WHO grade III) (n = 2), anaplastic astrocytoma, IDH-mutant (WHO grade III) (n = 1), oligodendroglioma, IDH-mutant and 1p/19q-codeleted (WHO grade II) (n = 1) and pilocytic astrocytoma (WHO grade I) (n = 1). No adverse events were noted.

Despite the lack of gadolinium-enhancement in the preoperative MRI, all patients intravenously received FL to guide resection. Irrespective of the final grading, FL was extremely helpful in detecting the lesions and in identifying their border zones. In selected patients with NEG, but strong metabolic activity according to the FET-PET, FL may significantly increase the accuracy of surgery 4).

Wei L, Roberts DW, Sanai N, Liu JTC. Visualization technologies for 5-ALA-based fluorescence-guided surgeries. J Neurooncol. 2018 Dec 15. doi: 10.1007/s11060-018-03077-9. [Epub ahead of print] Review. PubMed PMID: 30554344.
Chae MP, Song SW, Park SH, Park CK. Experience with 5- aminolevulinic Acid in fluorescence-guided resection of a deep sylvian meningioma. J Korean Neurosurg Soc. 2012;52:558–60.
Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: A prospective study in 52 consecutive patients. J Neurosurg. 2000;93:1003–13.
Schebesch KM, Brawanski A, Doenitz C, Rosengarth K, Proescholdt M, Riemenschneider MJ, Grosse J, Hellwig D, Höhne J. Fluorescence-guidance in non-Gadolinium enhancing, but FET-PET positive gliomas. Clin Neurol Neurosurg. 2018 Jul 19;172:177-182. doi: 10.1016/j.clineuro.2018.07.011. [Epub ahead of print] PubMed PMID: 30032095.
5_aminolevulinic_acid_fluorescence_guided_resection_of_glioma.txt · Last modified: 2019/04/02 22:04 by administrador