Brain edema, cerebral edema or cerebral œdema is an excess accumulation of fluid in the intracellular or extracellular spaces of the brain.

At present, the following types of cerebral edema are differentiated:

The vasogenic edema resulting from an increased permeability of the endothelium of cerebral capillaries to albumin and other plasma proteins

The cytotoxic edema resulting from the exhaustion of the energy potential of cell membranes without damage to the barrier;

The hydrostatic cerebral edema resulting from disturbance of the autoregulation of cerebral blood circulation

The osmotic cerebral edema resulting from dilution of blood; and the interstitial cerebral edema resulting from acute hydrocephalus.

Simard et al. suggest a new theory suggesting that ischaemia-induced capillary dysfunction can be attributed to de novo synthesis of a specific ensemble of proteins that determine osmotic and hydraulic conductivity in Starling's equation, and whose expression is driven by a distinct transcriptional program 1).

Supratentorial tumor surgery

The risk of brain swelling after dural opening is high in patients with midline shift undergoing supratentorial tumor surgery. Brain swelling may result in increased intracranial pressure, impeded tumor exposure, and adverse outcomes.

Brain swelling and increased intracranial pressure (ICP) following traumatic brain injury (TBI) contribute to poor outcome.

Massive brain swelling may occur in up to 10% of cerebral ischemic strokes 2).

Cerebral edema is a life-threatening condition that develops as a result of an inflammatory reaction. Most frequently, this is the consequence of cerebral trauma, massive cerebral infarction, hemorrhages, abscess, meningitis or encephalitis, tumor, allergy, sepsis, hypoxia, and other toxic or metabolic factors.

The blood–brain barrier (BBB) or the blood–cerebrospinal fluid (CSF) barrier may break down, allowing fluid to accumulate in the brain's extracellular space.

Altered metabolism may cause brain cells to retain water, and dilution of the blood plasma may cause excess water to move into brain cells.

Fast travel to high altitude without proper acclimatization can cause high-altitude cerebral edema (HACE).

Traumatic brain edema.

Peritumoral edema

Previous studies have shown that female mice have less brain edema and better recovery in neurological deficits after intracerebral hemorrhage (ICH) and that 17β-estradiol treatment in male mice markedly reduces ICH-induced brain edema.

Some authors have reported a rare unexplained complication of sudden death in association with massive cerebral edema immediately after cranioplasty. Sviri reports on 4 patients who underwent cranioplasty after decompressive craniectomy (DC) between January 2005 and August 2010 at his department and died because of massive cerebral edema immediately after uneventful surgery and anesthesia. All 4 of the new cases reported involved young male patients who underwent decompressive hemicraniectomy after traumatic brain injury. They developed massive cerebral swelling immediately after uneventful cranioplasty (3 patients) or after removal of an epidural hematoma several hours after surgery (1 patient). All 4 patients had a large skull defect and significantly sunken craniotomy site, and all were treated with a closed vacuum suction system that was placed under the scalp and kept open at the end of the cranioplasty procedure. After surgery, the patients' pupils became fixed and dilated, and brain CT scans showed massive brain edema. Despite emergency DC, the patients did not recover, and all 4 died. A MEDLINE search showed 8 similar cases that were reported previously. Fatal cerebral swelling after uneventful cranioplasty is a distinct clinical entity, although it is unpredictable. It is postulated that a negative pressure difference from the elimination of atmospheric pressure that had been chronically applied on the injured sinking brain in combination with the negative pressure applied by the closed subgaleal suction drain may lead to a massive brain shift toward the cranioplasty site and initiate a fatal vasomotor reaction 3).

Postoperative cerebral edema around a deep brain stimulation (DBS) electrode is an uncommon reported complication.

A retrospective chart review was performed on all patients who underwent DBS electrode implantation over a 3-year period. Routine CT imaging on postoperative day (POD) 1 was negative. Patients were identified based on clinical neurological changes, leading to imaging and subsequent diagnosis.

Five of 145 patients (3.4%) presented with new neurological symptoms from POD 1 to 14, which were confirmed by CT imaging to show perilead and/or subcortical edema around 6 of 281 electrodes (2.1%). Four of 5 patients had unilateral edema despite bilateral implantation. Clinical presentations varied widely. Two patients presenting on POD 1 with deteriorating conditions required longer inpatient stays with supportive measures than those presenting later (p = 0.0002). All patients were treated with corticosteroids and returned to baseline by 3 months after surgery.

Acute instances of DBS lead edema may occur as early as POD 1 and can rapidly progress into profound deficits. Treatment with supportive care and corticosteroids is otherwise identical to those cases presenting later 4).

Certain changes in morphology are associated with cerebral edema: the brain becomes soft and smooth and overfills the cranial vault, gyri (ridges) become flattened, sulci (grooves) become narrowed, and ventricular cavities become compressed.

Symptoms include nausea, vomiting, blurred vision, faintness, and in severe cases, seizures and coma. If brain herniation occurs, respiratory symptoms or respiratory arrest can also occur due to compression of the respiratory centers in the pons and medulla oblongata.

see Brain edema treatment.

Brain edema leading to an expansion of brain volume has a crucial impact on morbidity and mortality following traumatic brain injury (TBI) as it increases intracranial pressure, impairs cerebral perfusion pressure and oxygenation, and contributes to additional ischemic injuries.


In this book, leading world authorities on brain edema and neurological disorders/injuries and experts in preconditioning join forces to discuss the latest progress in basic sciences, translational research, and clinical management strategies relating to these conditions. The range of topics covered is wide, including microglia, energy metabolism, trace metals and ion channels, vascular biology, cellular treatment, hemorrhagic stroke, novel technological advances, anesthesia and medical gases, pediatric brain edema, neuroimaging, behavioral assessment, clinical trials, peripheral to central signaling pathways, preconditioning translation, and animal models for preconditioning and brain edema research. The book comprises presentations from Brain Edema 2014, the joint meeting of the 16th International Conference on Brain Edema and Cellular Injury and the 3rd Symposium on Preconditioning for Neurological Disorders, held in Los Angeles on September 27–30, 2014.

Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007 Mar;6(3):258-68. Review. PubMed PMID: 17303532; PubMed Central PMCID: PMC2725365.
Moulin DE, Lo R, Chiang J, Barnett HJM. Prognosis in middle cerebral artery occlusion. Stroke. 1985;16(2):282–284.
Sviri GE. Massive cerebral swelling immediately after cranioplasty, a fatal and unpredictable complication: report of 4 cases. J Neurosurg. 2015 Jun 19:1-6. [Epub ahead of print] PubMed PMID: 26090828.
Fenoy AJ, Villarreal SJ, Schiess MC. Acute and Subacute Presentations of Cerebral Edema following Deep Brain Stimulation Lead Implantation. Stereotact Funct Neurosurg. 2017 Feb 17;95(2):86-92. doi: 10.1159/000454892. [Epub ahead of print] PubMed PMID: 28208150.
  • brain_edema.txt
  • Last modified: 2019/11/24 12:30
  • by administrador