User Tools

Site Tools


cystatin_c

Cystatin C

To investigate the expressions of plasma cystatin C (Cys-C), D-dimer (D-D) and hypersensitive C reactive protein (hs-CRP) in patients with progressive traumatic intracranial hemorrhage (TIH) after traumatic brain injury, and their clinical significance.

Forty-two TIH patients and 20 healthy participants (control) were enrolled. The severity and outcome of TIH were determined according to the Glasgow Coma Scale and Glasgow Outcome Scale, and the plasma Cys-C, hs-CRP, and D-D levels were measured.

The plasma Cys-C, D-D and hs-CRP levels in the IPHI group were significantly higher than those in the control group (p < 0.01). There were significant differences in plasma Cys-C, D-D and hs-CRP levels among different IPHI patients according to the Glasgow Coma Scale and according to the Glasgow Outcome Scale (all p < 0.05). In the IPHI patients, the plasma Cys-C, D-D and hs-CRP levels were positively correlated with each other (p < 0.001).

The increase of plasma Cys-C, D-D and hs-CRP levels may be involved in TIH after traumatic brain injury. The early detection of these indexes may help to understand the severity and outcome of IPHI 1).


Disintegrin and metalloproteinases (ADAMs) 10 and 17 can release the extracellular part of a variety of membrane-bound proteins via ectodomain shedding important for many biological functions. So far, substrate identification focused exclusively on membrane-anchored ADAM10 and ADAM17. However, besides known shedding of ADAM10, we identified ADAM8 as a protease capable of releasing the ADAM17 ectodomain. Therefore, we investigated whether the soluble ectodomains of ADAM10/17 (sADAM10/17) exhibit an altered substrate spectrum compared to their membrane-bound counterparts. A mass spectrometry-based N-terminomics approach identified 134 protein cleavage events in total and 45 common substrates for sADAM10/17 within the secretome of murine cardiomyocytes. Analysis of these cleavage sites confirmed previously identified amino acid preferences. Further in vitro studies verified fibronectin, cystatin C, sN-cadherin, PCPE-1 as well as sAPP as direct substrates of sADAM10 and/or sADAM17. Overall, we present the first degradome study for sADAM10/17, thereby introducing a new mode of proteolytic activity within the protease web 2).


Primary intraventricular hemorrhage (PIVH) occurs frequently in adult hemorrhagic moyamoya disease (MMD).

A study aimed to compare the baseline characteristics and outcomes of acute MMD-related and idiopathic PIVH.

Adult patients with acute MMD-related or idiopathic PIVH were retrospectively included. Baseline characteristics and outcomes at discharge were obtained and compared. Chi-square test, t-test, or rank-sum test were used in statistical analyses.

This study finally included 32 patients with acute MMD-related PIVH and 112 with acute idiopathic PIVH. Patients with acute MMD-related PIVH were significantly younger (53.3 ± 15.8 vs. 42.8 ± 12.2 years, P<0.001). The admission systolic blood pressure in patients with acute idiopathic PIVH was significantly higher (161.7 ± 30.9 vs. 134.6 ± 24.6 mmHg, P<0.001). Patients with acute idiopathic PIVH had significantly higher admission serum urea (5.68 ± 2.66 vs. 4.34 ± 1.62 mmol/l, P=0.008), cystatin C (0.97 ± 0.72 vs. 0.68 ± 0.16 mg/l, P=0.023), and uric acid (309.01 ± 105.97 vs. 242.24 ± 77.65 μmol/l, P=0.001). In patients with acute MMD-related PIVH, only one (3.1%) patient was dead at discharge. In contrast, a total of 22 (19.6%) patients with acute idiopathic patients died at discharge (P=0.027).

Comparing to patients with acute idiopathic PIVH, patients with acute MMD-related PIVH have younger age, lower blood pressure, and better renal function. Moreover, patients with acute MMD-related PIVH have lower short-term mortality 3).

Unclassified

4: Li H, Wang A, Qi G, Guo J, Li X, Wang W, Xiang Y, Guo X. Cystatin C and risk of new-onset depressive symptoms among individuals with a normal creatinine-based estimated glomerular filtration rate: A prospective cohort study. Psychiatry Res. 2019 Mar;273:75-81. doi: 10.1016/j.psychres.2019.01.009. Epub 2019 Jan 3. PubMed PMID: 30640054.

5: Li P, Wang S, Zhang R, Pei J, Chen L, Cao Y, Zhang H, Yang G. Identification of CSF biomarkers by proteomics in Guillain-Barré syndrome. Exp Ther Med. 2018 Jun;15(6):5177-5182. doi: 10.3892/etm.2018.6117. Epub 2018 May 2. PubMed PMID: 29904402; PubMed Central PMCID: PMC5996704.

6: Duan J, Marcellus KA, Qin X, Wang Y, Paudel HK. Cystatin C promotes tau protein phosphorylation and causes microtubule instability by inhibiting intracellular turnover of GSK3β in neurons. Mol Cell Neurosci. 2018 Jun;89:1-8. doi: 10.1016/j.mcn.2018.03.009. Epub 2018 Mar 22. PubMed PMID: 29577984.

7: Weng R, Wei X, Yu B, Zhu S, Yang X, Xie F, Zhang M, Jiang Y, Feng ZP, Sun HS, Xia Y, Jin K, Chan P, Wang Q, Gao X. Combined measurement of plasma cystatin C and low-density lipoprotein cholesterol: A valuable tool for evaluating progressive supranuclear palsy. Parkinsonism Relat Disord. 2018 Jul;52:37-42. doi: 10.1016/j.parkreldis.2018.03.014. Epub 2018 Mar 19. PubMed PMID: 29574085.

8: Pfanner T, Henri-Bhargava A, Borchert S. Cerebrospinal Fluid Biomarkers as Predictors of Shunt Response in Idiopathic Normal Pressure Hydrocephalus: A Systematic Review. Can J Neurol Sci. 2018 Jan;45(1):3-10. doi: 10.1017/cjn.2017.251. Epub 2017 Nov 10. PubMed PMID: 29125088.

9: Sanders MF, Reitsma JB, Morpey M, Gremmels H, Bots ML, Pisano A, Bolignano D, Zoccali C, Blankestijn PJ. Renal safety of catheter-based renal denervation: systematic review and meta-analysis. Nephrol Dial Transplant. 2017 Sep 1;32(9):1440-1447. doi: 10.1093/ndt/gfx088. Review. PubMed PMID: 29059396.

10: Sun G, Yin Z, Liu N, Bian X, Yu R, Su X, Zhang B, Wang Y. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity. Biochem Biophys Res Commun. 2017 Nov 18;493(2):964-970. doi: 10.1016/j.bbrc.2017.09.108. Epub 2017 Sep 20. PubMed PMID: 28942145.

11: Deng Y, Yuan J, Chi R, Ye H, Zhou D, Wang S, Mai C, Nie Z, Wang L, Zhai Y, Gao L, Zhang D, Hu L, Deng Y, Chen C. The Incidence, Risk Factors and Outcomes of Postoperative Acute Kidney Injury in Neurosurgical Critically Ill Patients. Sci Rep. 2017 Jun 26;7(1):4245. doi: 10.1038/s41598-017-04627-3. PubMed PMID: 28652590; PubMed Central PMCID: PMC5484679.

12: Lim TKY, Anderson KM, Hari P, Di Falco M, Reihsen TE, Wilcox GL, Belani KG, LaBoissiere S, Pinto MR, Beebe DS, Kehl LJ, Stone LS. Evidence for a Role of Nerve Injury in Painful Intervertebral Disc Degeneration: A Cross-Sectional Proteomic Analysis of Human Cerebrospinal Fluid. J Pain. 2017 Oct;18(10):1253-1269. doi: 10.1016/j.jpain.2017.06.002. Epub 2017 Jun 24. PubMed PMID: 28652204; PubMed Central PMCID: PMC5614853.

13: Wang K, Lu D, Zhang B, Wang S, Liu Q, Zhang Q, Geng J, Shan Q. Renal Denervation Attenuates Multi-Organ Fibrosis and Improves Vascular Remodeling in Rats with Transverse Aortic Constriction Induced Cardiomyopathy. Cell Physiol Biochem. 2016;40(3-4):465-476. Epub 2016 Nov 25. PubMed PMID: 27889753.

14: Kou HJ, Wang X, Gao DF, Dong X, Wei J, Ma R. Relationships of Blood Pressure Circadian Rhythm and Brain Natriuretic Peptide with Left Ventricular Hypertrophy in the Patients with Primary Hypertension. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2016 Oct 10;38(5):514-521. doi: 10.3881/j.issn.1000-503X.2016.05.004. PubMed PMID: 27825406.

15: Lang D, Nahler A, Lambert T, Grund M, Kammler J, Kellermair J, Blessberger H, Kypta A, Steinwender C, Auer J. Anti-Inflammatory Effects and Prediction of Blood Pressure Response by Baseline Inflammatory State in Catheter-Based Renal Denervation. J Clin Hypertens (Greenwich). 2016 Nov;18(11):1173-1179. doi: 10.1111/jch.12844. Epub 2016 Jun 1. PubMed PMID: 27246513.

16: Wallbach M, Halbach M, Reuter H, Passauer J, Lüders S, Böhning E, Zenker D, Müller GA, Wachter R, Koziolek MJ. Baroreflex activation therapy in patients with prior renal denervation. J Hypertens. 2016 Aug;34(8):1630-8. doi: 10.1097/HJH.0000000000000949. PubMed PMID: 27137174.

17: Nakajima M, Miyajima M, Ogino I, Akiba C, Sugano H, Hara T, Fusegi K, Karagiozov K, Arai H. Cerebrospinal fluid biomarkers for prognosis of long-term cognitive treatment outcomes in patients with idiopathic normal pressure hydrocephalus. J Neurol Sci. 2015 Oct 15;357(1-2):88-95. doi: 10.1016/j.jns.2015.07.001. Epub 2015 Jul 2. PubMed PMID: 26169158.

18: Pöss J, Ewen S, Schmieder RE, Muhler S, Vonend O, Ott C, Linz D, Geisel J, Rump LC, Schlaich M, Böhm M, Mahfoud F. Effects of renal sympathetic denervation on urinary sodium excretion in patients with resistant hypertension. Clin Res Cardiol. 2015 Aug;104(8):672-8. doi: 10.1007/s00392-015-0832-5. Epub 2015 Feb 26. PubMed PMID: 25715938.

19: Açıkgöz Ş, Can M, Güven B, Edebali N, Barut F, Büyükuysal Ç, Tekin İÖ, Açıkgöz B. Cystain C and neuropeptid Y levels in brain tissues after experimental subarachnoid hemorrhage. Acta Biochim Pol. 2014;61(4):825-8. Epub 2014 Dec 18. PubMed PMID: 25566547.

20: Goksu E, Goksu E, Karsli B, Akyuz M, Akbas H, Unal A, Boztug N, Tuncer R. Cerebrospinal fluid cystatin C levels following treatment for aneurysmal subarachnoid hemorrhage. Turk Neurosurg. 2014;24(3):391-7. doi: 10.5137/1019-5149.JTN.8953-13.1. PubMed PMID: 24848180.

21: Bausback Y, Friedenberger J, Hertting K, Werner M, Branzan D, Freitas B, Piorkowski M, Schmidt A, Scheinert D. Renal denervation for hypertension refractory to renal artery stenting. J Endovasc Ther. 2014 Apr;21(2):181-90. doi: 10.1583/13-4566R.1. PubMed PMID: 24754276.

22: Wetterhall M, Bergquist J, Hillered L, Hjort K, Dahlin AP. Identification of human cerebrospinal fluid proteins and their distribution in an in vitro microdialysis sampling system. Eur J Pharm Sci. 2014 Jun 16;57:34-40. doi: 10.1016/j.ejps.2013.12.011. Epub 2013 Dec 20. PubMed PMID: 24361471.

23: Sze L, Bernays RL, Zwimpfer C, Wiesli P, Brändle M, Schmid C. Impact of Growth Hormone on Cystatin C. Nephron Extra. 2013 Nov 20;3(1):118-124. eCollection 2013. PubMed PMID: 24348508; PubMed Central PMCID: PMC3861865.

24: Liu Y, Li J, Wang Z, Yu Z, Chen G. Attenuation of early brain injury and learning deficits following experimental subarachnoid hemorrhage secondary to Cystatin C: possible involvement of the autophagy pathway. Mol Neurobiol. 2014 Apr;49(2):1043-54. doi: 10.1007/s12035-013-8579-3. Epub 2013 Nov 9. PubMed PMID: 24203677.

25: Zeng J, Tong W, Zheng P. Decreased risk of acute kidney injury with intracranial pressure monitoring in patients with moderate or severe brain injury. J Neurosurg. 2013 Nov;119(5):1228-32. doi: 10.3171/2013.7.JNS122131. Epub 2013 Aug 2. PubMed PMID: 23909252.

26: Worthley SG, Tsioufis CP, Worthley MI, Sinhal A, Chew DP, Meredith IT, Malaiapan Y, Papademetriou V. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J. 2013 Jul;34(28):2132-40. doi: 10.1093/eurheartj/eht197. Epub 2013 Jun 19. PubMed PMID: 23782649; PubMed Central PMCID: PMC3717311.

27: Patton SM, Cho YW, Clardy TW, Allen RP, Earley CJ, Connor JR. Proteomic analysis of the cerebrospinal fluid of patients with restless legs syndrome/Willis-Ekbom disease. Fluids Barriers CNS. 2013 Jun 7;10(1):20. doi: 10.1186/2045-8118-10-20. PubMed PMID: 23758918; PubMed Central PMCID: PMC3680184.

28: Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, Linz D, Schmieder R, Rump LC, Kindermann I, Sobotka PA, Krum H, Scheller B, Schlaich M, Laufs U, Böhm M. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012 Aug;60(2):419-24. doi: 10.1161/HYPERTENSIONAHA.112.193870. Epub 2012 Jun 25. PubMed PMID: 22733462.

29: Uchida A, Sasaguri H, Kimura N, Tajiri M, Ohkubo T, Ono F, Sakaue F, Kanai K, Hirai T, Sano T, Shibuya K, Kobayashi M, Yamamoto M, Yokota S, Kubodera T, Tomori M, Sakaki K, Enomoto M, Hirai Y, Kumagai J, Yasutomi Y, Mochizuki H, Kuwabara S, Uchihara T, Mizusawa H, Yokota T. Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43. Brain. 2012 Mar;135(Pt 3):833-46. doi: 10.1093/brain/awr348. Epub 2012 Jan 17. PubMed PMID: 22252998; PubMed Central PMCID: PMC3286326.

30: Schlaich MP, Straznicky N, Grima M, Ika-Sari C, Dawood T, Mahfoud F, Lambert E, Chopra R, Socratous F, Hennebry S, Eikelis N, Böhm M, Krum H, Lambert G, Esler MD, Sobotka PA. Renal denervation: a potential new treatment modality for polycystic ovary syndrome? J Hypertens. 2011 May;29(5):991-6. doi: 10.1097/HJH.0b013e328344db3a. PubMed PMID: 21358414.

31: Lah TT, Nanni I, Trinkaus M, Metellus P, Dussert C, De Ridder L, Rajcević U, Blejec A, Martin PM. Toward understanding recurrent meningioma: the potential role of lysosomal cysteine proteases and their inhibitors. J Neurosurg. 2010 May;112(5):940-50. doi: 10.3171/2009.7.JNS081729. PubMed PMID: 19747051.

32: Hanrieder J, Wetterhall M, Enblad P, Hillered L, Bergquist J. Temporally resolved differential proteomic analysis of human ventricular CSF for monitoring traumatic brain injury biomarker candidates. J Neurosci Methods. 2009 Mar 15;177(2):469-78. PubMed PMID: 19263575.

33: Aoki T, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N. Cathepsin B, K, and S are expressed in cerebral aneurysms and promote the progression of cerebral aneurysms. Stroke. 2008 Sep;39(9):2603-10. doi: 10.1161/STROKEAHA.107.513648. Epub 2008 Jul 17. PubMed PMID: 18635848.

34: Hao HP, Doh-Ura K, Nakanishi H. Impairment of microglial responses to facial nerve axotomy in cathepsin S-deficient mice. J Neurosci Res. 2007 Aug 1;85(10):2196-206. PubMed PMID: 17539023.

35: Khwaja FW, Nolen JD, Mendrinos SE, Lewis MM, Olson JJ, Pohl J, Van Meir EG, Ritchie JC, Brat DJ. Proteomic analysis of cerebrospinal fluid discriminates malignant and nonmalignant disease of the central nervous system and identifies specific protein markers. Proteomics. 2006 Dec;6(23):6277-87. PubMed PMID: 17078017.

36: Nakabayashi H, Hara M, Shimuzu K. Clinicopathologic significance of cystatin C expression in gliomas. Hum Pathol. 2005 Sep;36(9):1008-15. PubMed PMID: 16153465.

37: Engelsberg K, Ehinger B, Wassélius J, Johansson K. Apoptotic cell death and microglial cell responses in cultured rat retina. Graefes Arch Clin Exp Ophthalmol. 2004 Mar;242(3):229-39. Epub 2004 Jan 27. PubMed PMID: 14745560.

38: Ying GX, Huang C, Jiang ZH, Liu X, Jing NH, Zhou CF. Up-regulation of cystatin C expression in the murine hippocampus following perforant path transections. Neuroscience. 2002;112(2):289-98. PubMed PMID: 12044447.

39: Nicholson G, Bryant AE, Macdonald IA, Hall GM. Osteocalcin and the hormonal, inflammatory and metabolic response to major orthopaedic surgery. Anaesthesia. 2002 Apr;57(4):319-25. PubMed PMID: 11939988.

40: Izumihara A, Ishihara T, Hoshii Y, Ito H. Cerebral amyloid angiopathy associated with hemorrhage: immunohistochemical study of 41 biopsy cases. Neurol Med Chir (Tokyo). 2001 Oct;41(10):471-7; discussion 477-8. PubMed PMID: 11760381.

41: Strojnik T, Zidanik B, Kos J, Lah TT. Cathepsins B and L are markers for clinically invasive types of meningiomas. Neurosurgery. 2001 Mar;48(3):598-605. PubMed PMID: 11270551.

42: Yoshimura K, Tsuchida T, Kawamoto K. Expression of cathepsin B and cystatin C in the human adenohypophysis and in pituitary adenomas. Oncol Rep. 2000 Jan-Feb;7(1):27-31. PubMed PMID: 10601586.

43: Katakai K, Shinoda M, Kabeya K, Watanabe M, Ohe Y, Mori M, Ishikawa K. Changes in distribution of cystatin C, apolipoprotein E and ferritin in rat hypothalamus after hypophysectomy. J Neuroendocrinol. 1997 Apr;9(4):247-53. PubMed PMID: 9147287.

44: Graffagnino C, Herbstreith MH, Roses AD, Alberts MJ. A molecular genetic study of intracerebral hemorrhage. Arch Neurol. 1994 Oct;51(10):981-4. PubMed PMID: 7945009.

45: Hamberger A, Nyström B, Silvenius H, Wikkelsø C. The contribution from the choroid plexus and the periventricular CNS to amino acids and proteins in the human CSF. Neurochem Res. 1990 Mar;15(3):307-12. PubMed PMID: 1694975.

46: Luyendijk W, Bots GT, Vegter-van der Vlis M, Went LN, Frangione B. Hereditary cerebral haemorrhage caused by cortical amyloid angiopathy. J Neurol Sci. 1988 Jul;85(3):267-80. PubMed PMID: 3210024.

1)
Peng Q, Zhao J, Wang P, Huang C, Chen B, Song J, Xu G. Expressions of plasma cystatin C, D-dimer and hypersensitive C-reactive protein in patients with intracranial progressive hemorrhagic injury after craniocerebral injury, and their clinical significance. Arq Neuropsiquiatr. 2019 Jul 15;77(6):381-386. doi: 10.1590/0004-282×20190057. PubMed PMID: 31314839.
2)
Scharfenberg F, Helbig A, Sammel M, Benzel J, Schlomann U, Peters F, Wichert R, Bettendorff M, Schmidt-Arras D, Rose-John S, Moali C, Lichtenthaler SF, Pietrzik CU, Bartsch JW, Tholey A, Becker-Pauly C. Degradome of soluble ADAM10 and ADAM17 metalloproteases. Cell Mol Life Sci. 2019 Jun 17. doi: 10.1007/s00018-019-03184-4. [Epub ahead of print] PubMed PMID: 31209506.
3)
Yu Z, Guo R, Zheng J, Li M, Wen D, Li H, You C, Ma L. Comparison of acute moyamoya disease-related and idiopathic primary intraventricular hemorrhage in adult patients. World Neurosurg. 2019 Jan 24. pii: S1878-8750(19)30167-6. doi: 10.1016/j.wneu.2019.01.070. [Epub ahead of print] PubMed PMID: 30685378.
cystatin_c.txt · Last modified: 2019/07/18 15:45 by administrador