dopamine

Dopamine

see Dopamine agonist.

see Dopamine receptor.

see Dopamine overdose hypothesis.

Dopamine (contracted from 3,4-dihydroxyphenethylamine) is a hormone and neurotransmitter of the catecholamine and phenethylamine families that plays a number of important roles in the human brain and body. Its name derives from its chemical structure: it is an amine that is formed by removing a carboxyl group from a molecule of L-DOPA.

In the brain, dopamine functions as a neurotransmitter—a chemical released by nerve cells to send signals to other nerve cells. The brain includes several distinct dopamine systems, one of which plays a major role in reward-motivated behavior. Most types of reward increase the level of dopamine in the brain, and a variety of addictive drugs increase dopamine neuronal activity. Other brain dopamine systems are involved in motor control and in controlling the release of several other important hormones.


Dopaminergic neurons of the midbrain are the main source of dopamine (DA) in the mammalian central nervous system.


Guo et al. discovered that dopamine receptor D1 and D2 receptor signaling selectively and distinctly regulated aberrant changes in structural and functional plasticity. The findings suggest that both D1 and D2 receptor signaling regulate motor cortex plasticity, and loss of dopamine results in atypical synaptic adaptations that may contribute to the impairment of motor performance and motor memory observed in PD 1).

The frontal lobe contains most of the dopamine-sensitive neurons in the cerebral cortex. The dopamine system is associated with reward, attention, short-term memory tasks, planning, and motivation. Dopamine tends to limit and select sensory information arriving from the thalamus to the fore-brain. A report from the National Institute of Mental Health says a gene variant that reduces dopamine activity in the prefrontal cortex is related to poorer performance and inefficient functioning of that brain region during working memory tasks, and to slightly increased risk for schizophrenia.


Recent animal research indicates that dopamine and serotonin, neuromodulators traditionally linked to appetitive and aversive processes, are also involved in sensory inference and decisions based on such inference. Bang et al. tested this hypothesis in humans by monitoring sub-second striatal dopamine and serotonin signaling during a visual motion discrimination task that separates sensory uncertainty from decision difficulty in a factorial design. Caudate nucleus recordings (n = 4) revealed multi-scale encoding: in three participants, serotonin tracked sensory uncertainty, and, in one participant, both dopamine and serotonin tracked deviations from expected trial transitions within our factorial design. Putamen recordings (n = 1) supported a cognition-action separation between the caudate nucleus and putamen-a striatal sub-division unique to primates-with both dopamine and serotonin tracking decision times. These first-of-their-kind observations in the human brain reveal a role for sub-second dopamine and serotonin signaling in non-reward-based aspects of cognition and action 2).


1)
Guo L, Xiong H, Kim JI, Wu YW, Lalchandani RR, Cui Y, Shu Y, Xu T, Ding JB. Dynamic rewiring of neural circuits in the motor cortex in mouse models of Parkinson's disease. Nat Neurosci. 2015 Aug 3. doi: 10.1038/nn.4082. [Epub ahead of print] PubMed PMID: 26237365.
2)
Bang D, Kishida KT, Lohrenz T, White JP, Laxton AW, Tatter SB, Fleming SM, Montague PR. Sub-second Dopamine and Serotonin Signaling in Human Striatum during Perceptual Decision-Making. Neuron. 2020 Oct 5:S0896-6273(20)30715-7. doi: 10.1016/j.neuron.2020.09.015. Epub ahead of print. PMID: 33049201.
  • dopamine.txt
  • Last modified: 2020/10/16 00:39
  • by administrador