User Tools

Site Tools


gluconeogenesis

Gluconeogenesis

Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose from non-carbohydrate carbon substrates such as pyruvate, lactate, glycerol, and glucogenic amino acids. While primarily odd-chain fatty acids can be converted into glucose, it is possible for at least some even-chain fatty acids.

It is one of the two main mechanisms used by humans and many other animals to maintain blood glucose levels, avoiding low blood glucose level (hypoglycemia). The other means of maintaining blood glucose levels is through the degradation of glycogen (glycogenolysis).


Non-alcoholic fatty liver disease (NAFLD) has a positive correlation with obesity, insulin resistance and type 2 diabetes mellitus (T2D). The aerobic training is an important tool in combating NAFLD. However, no studies have demonstrated the molecular effects of short-term strength training on the accumulation of hepatic fat in obese mice.

A study aimed to investigate the effects of short-term strength training on the mechanisms of oxidation and lipid synthesis in the liver of obese mice. The short duration protocol was used to avoid changing the amount of adipose tissue. Swiss mice were separated into three groups: lean control (CTL), sedentary obese (OB) and strength training obese (STO). The obese groups were fed a high-fat diet (HFD) and the STO group performed the strength training protocol 1 session/day for 15 days. The short-term strength training reduced hepatic fat accumulation, increasing hepatic insulin sensitivity and controlling hepatic glucose production. The obese animals increased the mRNA of lipogenic genes Fasn and Scd1 and reduced the oxidative genes Cpt1a and Ppara. On the other hand, the STO group presented the opposite results. Finally, the obese animals presented higher levels of lipogenic proteins (ACC and FAS) and proinflammatory cytokines (TNF-α and IL-1β), but the short-term strength training was efficient in reducing this condition, regardless of body weight loss.

In conclusion, there was a reduction of obesity-related hepatic lipogenesis and inflammation after short-term strength training, independent of weight loss, leading to improvements in hepatic insulin sensitivity and glycemic homeostasis in obese mice. Key points: (1) Short-term strength training (STST) reduced fat accumulation and inflammation in the liver; (2) Hepatic insulin sensitivity and HPG control were increased with STST; (3) The content and activity of ACC and content of FAS were reduced with STST; (4) STST improved hepatic fat accumulation and glycemic homeostasis; (5) STST effects were observed independently of body weight change 1).

1)
Pereira RM, Rodrigues KCDC, Anaruma CP, Sant'Ana MR, de Campos TDP, Gaspar RS, Canciglieri RDS, de Melo DG, Mekary RA, da Silva ASR, Cintra DE, Ropelle ER, Pauli JR, de Moura LP. Short-term strength training reduces gluconeogenesis and NAFLD in obese mice. J Endocrinol. 2019 Apr 1;241(1):59-70. doi: 10.1530/JOE-18-0567. PubMed PMID: 30878016.
gluconeogenesis.txt · Last modified: 2019/03/17 09:16 by administrador