User Tools

Site Tools


navigated_transcranial_magnetic_stimulation

Navigated transcranial magnetic stimulation

Transcranial magnetic stimulation (TMS) is a unique method for non-invasive brain imaging. The fundamental difference between TMS and other available non-invasive brain imaging techniques is that when a physiological response is evoked by stimulation of a cortical area, that specific cortical area is causally related to the response. With other imaging methods, it is only possible to detect and map a brain area that participates in a given task or reaction. TMS has been shown to be clinically accurate and effective in mapping cortical motor areas and applicable to the functional assessment of motor tracts following stroke, for example. Many hundreds of studies have been published indicating that repetitive TMS (rTMS) may also have multiple therapeutic applications. Techniques and protocols for individually targeting and dosing rTMS urgently need to be developed in order to ascertain the accuracy, repeatability and reproducibility required of TMS in clinical applications 1).


Navigated transcranial magnetic stimulation (nTMS) is a modification of TMS that combines magnetic resonance imaging-based (MRI-based), threedimensional cortical localization with TMS and simultaneous electromyography (EMG) measurement to locate brain areas capable of evoking muscle responses when stimulated.

Recent advances such as the co-registration of the subject’s head with structural MRI have allowed the application of stimulations with a precision of a few millimeters. Prior experiments have demonstrated a strong correlation between nTMS and intraoperative direct cortical stimulation (DCS) 2).

A study shows the feasibility of increasing the MEP detection threshold to 500 μV in rMT determination and motor area mapping with nTMS without losing precision 3).

Indications

Postoperative navigated transcranial magnetic stimulation

Case series

2016

113 patients undergoing bihemispheric nTMS examination prior to surgery for gliomas in presumed motor eloquent locations. Multiple ordinal logistic regression analysis was performed to test for any association between preoperative nTMS-related variables and postoperative motor outcome.

A new motor deficit or deterioration due to a preexisting deficit was observed in 20% of cases after 7 days and in 22% after 3 months. In terms of tumor location, no new permanent deficit was observed when the distance between tumor and corticospinal tract was greater than 8 mm and the precentral gyrus was not infiltrated (p = 0.014). New postoperative deficits on Day 7 were associated with a pathological excitability of the motor cortices (interhemispheric resting motor threshold [RMT] ratio < 90% or > 110%, p = 0.031). Interestingly, motor function never improved when the RMT was significantly higher in the tumorous hemisphere than in the healthy hemisphere (RMT ratio > 110%).

The proposed risk stratification model, based on objective functional-anatomical and neurophysiological measures, enables one to counsel patients about the risk of functional deterioration or the potential for recovery 4).


Between 2010 and 2013, nTMS motor mapping was performed in a prospective cohort of 100 patients with brain tumors in or adjacent to the rolandic cortex. Spatial data analysis was performed by normalization of the individual motor maps and creation of overlays according to tumor location. Analysis of motor evoked potential (MEP) latencies was performed regarding mean overall latencies and potentially polysynaptic latencies, defined as latencies longer than 1 SD above the mean value. Hemispheric dominance, lesion location, and motor-function deficits were also considered.

Graphical analysis showed that motor areas were not restricted to the precentral gyrus. Instead, they spread widely in the anterior-posterior direction. An analysis of MEP latency showed that mean MEP latencies were shortest in the precentral gyrus and longest in the superior and middle frontal gyri. The percentage of latencies longer than 1 SD differed widely across gyri. The dominant hemisphere showed a greater number of longer latencies than the nondominant hemisphere (p < 0.0001). Moreover, tumor location-dependent changes in distribution of polysynaptic latencies were observed (p = 0.0002). Motor-function deficit did not show any statistically significant effect.

The distribution of primary and polysynaptic motor areas changes in patients with brain tumors and highly depends on tumor location. Thus, these data should be considered for resection planning 5).

1)
Ruohonen J, Karhu J. Navigated transcranial magnetic stimulation. Neurophysiol Clin. 2010 Mar;40(1):7-17. doi: 10.1016/j.neucli.2010.01.006. Epub 2010 Feb 19. Review. PubMed PMID: 20230931.
2)
Picht T, Schmidt S, Brandt S, Frey D, Hannula H, Neuvonen T, Karhu J, Vajkoczy P, Suess O (2011) Preoperative functional mapping for Rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery 69(3):581–589
3)
Lucente G, Lam S, Schneider H, Picht T. Preservation of motor maps with increased motor evoked potential amplitude threshold in RMT determination. Acta Neurochir (Wien). 2018 Feb;160(2):325-330. doi: 10.1007/s00701-017-3417-4. Epub 2017 Dec 6. Erratum in: Acta Neurochir (Wien). 2018 Jun 16;:. PubMed PMID: 29214399.
4)
Rosenstock T, Grittner U, Acker G, Schwarzer V, Kulchytska N, Vajkoczy P, Picht T. Risk stratification in motor area-related glioma surgery based on navigated transcranial magnetic stimulation data. J Neurosurg. 2016 Jun 3:1-11. [Epub ahead of print] PubMed PMID: 27257834.
5)
Bulubas L, Sabih J, Wohlschlaeger A, Sollmann N, Hauck T, Ille S, Ringel F, Meyer B, Krieg SM. Motor areas of the frontal cortex in patients with motor eloquent brain lesions. J Neurosurg. 2016 Mar 11:1-12. [Epub ahead of print] PubMed PMID: 26967780.
navigated_transcranial_magnetic_stimulation.txt · Last modified: 2019/04/15 18:41 by administrador