Neurosurgical procedure

- Baron Dominique-Jean Larrey (1766-1842): Innovator of the triage
- Reducing the neurosurgical waiting list burden: is it a futile endeavour?
- The case of treatment for carotid web - Double-layer micromesh stent implantation in our hospital
- Occipital artery: Anatomical variations and neurosurgical applications
- Obstetric Violence is a Misnomer
- Letter to the Editor Regarding "Making the Case for Public Reporting of Data in Neurosurgery: A Physician's Personal Story"
- In Reply to the Letter to the Editor Regarding "Making the Case for Public Reporting of Data in Neurosurgery: A Physician's Personal Story"
- The Future of Neuroendoscopy: Looking Ahead Through a Lens

Neurosurgery encompasses a variety of procedures, including brain surgery, spinal surgery, and peripheral nerve surgery. Some common neurosurgical procedures include tumor removal, treatment of vascular disorders (aneurysms and arteriovenous malformations), epilepsy surgery, and spinal fusion.

The act of performing surgery may be called a surgical procedure, operation, or simply surgery.

https://wcvm.usask.ca/vsac205/

In response to a variety of drivers, surgical curricula are moving away from immersion learning, and the traditional time‐served apprenticeship approach is being replaced by more formal, structured, competency assessment programs. Work schedules are being regulated in many countries by legislation directed at health and safety considerations for both doctors and patients. The consequent reduction in attendance in the operating theatre produces a concomitant reduction in exposure to clinical situations and in the requisite number of operative procedures.

True obligatory standards for surgery do not exist. The operation rather depends on other skills like the experience or education of the surgeon or technical and clinical infrastructure.

see Neurosurgery

see Operative neurosurgery

see Microsurgery

see Tumor surgery

see Approaches.
Planning

see Operative planning

Examples

Chronic subdural hematoma surgery.

Lumbar Decompression Surgery for Spinal Canal Stenosis.

Lumboperitoneal shunt

Procedures

Acute Subdural Hematoma Surgical Technique

Amygdalohippocampectomy

Anterior cervical discectomy and fusion

Biopsy.

Burr hole trephination.

Cranectomy.

Cranioplasty.

Craniotomy.

Chronic Subdural Hematoma Surgical Technique.

Decompressive craniectomy.

Deep Brain stimulation.

Dorsal Root Ganglion Stimulation Technique.

Epilepsy surgery.

External ventricular drainage.

Frontal sinus cranialization technique.

Hemicraniectomy.

Intracranial Epidural Hematoma Surgical Technique.

Intrathecal Baclofen Technique.
Laminectomy.

Lumbar puncture technique.

Mesencephalotomy.

Ommaya reservoir implantation

Pallidotomy.

Peripheral nerve field stimulation.

Peritoneal catheter placement for ventriculoperitoneal shunt placement.

Peritoneal catheter repositioning for abdominal pseudocyst

Rhizotomy.

Selective nerve root block.

Skin incision.

Stereotaxy.

Temporal craniotomy.

Thermoablative procedure.

Ventricular catheter placement for hydrocephalus or intracranial pressure monitoring

Approaches

see Approaches.

Spine Surgery

see Spine Surgery

Endovascular techniques

see Endovascular techniques.

Types

see Intracranial procedures
Neurosurgical procedures are associated with unintentional damage to the brain during surgery, known as surgically induced brain injuries (SBI), which have been implicated in orchestrating structural and neurobehavioral deterioration.

Books

- Atlas of Neurosurgical Techniques
- Schmidek and Sweet Operative Neurosurgical Techniques

Time-critical neurosurgical conditions require urgent operative treatment to prevent death or neurological deficits. In New South Wales/Australian Capital Territory patients' distance from neurosurgical care is often great, presenting a challenge in achieving timely care for patients with acute neurosurgical conditions.

A protocol was developed to facilitate consultant neurosurgery locally. Children with acute, time-critical neurosurgical emergencies underwent operations in hospitals that do not normally offer neurosurgery. The authors describe the developed protocol, the outcome of its use, and the lessons learned in the 9 initial cases where the protocol has been used. Three cases are discussed in detail.

Nine children were treated by a neurosurgeon at 5 rural hospitals, and 2 children were treated at a smaller metropolitan hospital. Road ambulance, fixed wing aircraft, and medical helicopters were used to transport the Newborn and Paediatric Emergency Transport Service (NETS) team, neurosurgeon, and patients. In each case, the time to definitive neurosurgical intervention was significantly reduced. The median interval from triage at the initial hospital to surgical start time was 3:55 hours, (interquartile range [IQR] 03:29-05:20 hours). The median distance traveled to reach a patient was 232 km (range 23-637 km). The median interval from the initial NETS call requesting patient retrieval to surgical start time was 3:15 hours (IQR 00:47-03:37 hours). The estimated median “time saved” was approximately 3:00 hours (IQR 1:44-3:15 hours) compared with the travel time to retrieve the child to the tertiary center: 8:31 hours (IQR 6:56-10:08 hours).

Remote urgent neurosurgical interventions can be performed safely and effectively. This practice is relevant to countries where distance limits urgent access for patients to tertiary pediatric care. This practice is lifesaving for some children with head injuries and other acute neurosurgical conditions

Complications

see Complications.
Neurosurgery subspecialties

see Neurosurgery subspecialties.

From: https://operativeneurosurgery.com/ - Neurosurgery Wiki

Permanent link: https://operativeneurosurgery.com/doku.php?id=neurosurgical_procedure

Last update: 2023/09/23 20:03