User Tools

Site Tools


perfusion

Perfusion

Perfusion is the process of a body delivering blood to a capillary bed in its biological tissue. The word is derived from the French verb “perfuser” meaning to “pour over or through.

Tests verifying that adequate perfusion exists are a part of a patient's assessment process that are performed by medical or emergency personnel. The most common methods include evaluating a body's skin color, temperature, condition and capillary refill.

see Brain perfusion

see CT Perfusion

see Spinal cord perfusion

see Magnetic resonance perfusion imaging.


Pharmaceutical research requires pre-clinical testing of new therapeutics using both in-vitro and in-vivo models. However, the species specificity of non-human in-vivo models and the inadequate recapitulation of physiological conditions in-vitro are intrinsic weaknesses.

Wan et al. showed that perfusion is a vital factor for engineered human tissues to recapitulate key aspects of the tumour microenvironment. Organotypic culture and human tumour explants were allowed to grow long-term (14-35 days) and phenotypic features of perfused microtumours compared with those in the static culture. Differentiation status and therapeutic responses were significantly different under perfusion, indicating a distinct biological response of cultures grown under static conditions. Furthermore, heterogeneous co-culture of tumour and endothelial cells demonstrated selective cell-killing under therapeutic perfusion versus episodic delivery.

They present a perfused 3D microtumour culture platform that sustains a more physiological tissue state and increased viability for long-term analyses. This system has the potential to tackle the disadvantages inherit of conventional pharmaceutical models and is suitable for precision medicine screening of tumour explants, particularly in hard-to-treat cancer types such as brain cancer which suffer from a lack of clinical samples 1).

1)
Wan X, Ball S, Willenbrock F, Yeh S, Vlahov N, Koennig D, Green M, Brown G, Jeyaretna S, Li Z, Cui Z, Ye H, O'Neill E. Perfused Three-dimensional Organotypic Culture of Human Cancer Cells for Therapeutic Evaluation. Sci Rep. 2017 Aug 25;7(1):9408. doi: 10.1038/s41598-017-09686-0. PubMed PMID: 28842598.
perfusion.txt · Last modified: 2018/12/30 12:31 by administrador