Pseudoprogression in Intracranial Metastases
Stereotactic radiotherapy (SRT) of brain metastasis can lead to lesion growth caused by radiation toxicity. The pathophysiology of this so-called pseudo-progression is poorly understood. The purpose of this study was to evaluate the use of MRI cine-loops for describing the consecutive events in this radiation induced lesion growth. Ten patients were selected from our department's database that had received SRT of brain metastases and had lesion growth caused by pseudo-progression as well as at least five follow-up MRI scans. Pre- and post SRT MRI scans were co-registered and cine-loops were made using post-gadolinium 3D T1 axial slices. The ten cine loops were discussed in a joint meeting of the authors. The use of cine-loops was superior to evaluation of separate MRI scans for interpretation of events after SRT. There was a typical lesion evolution pattern in all patients with varying time course. Initially regression of the metastases was observed, followed by an enlarging area of new contrast enhancement in the surrounding brain tissue. Analysis of consecutive MRI's using cine-loops may improve understanding of pseudo-progression. It probably represents a radiation effect in brain tissue surrounding the irradiated metastasis and not enlargement of the metastasis itself 1).
Pseudoprogression can be distinguished from disease progression in cerebral metastases treated with SRS via an interval decrease in relative CBV and Ktrans values 2).
Apparent increases in the size of cerebral metastases after stereotactic radiosurgery (SRS) can be caused by pseudoprogression or true disease progression, which poses a diagnostic challenge at conventional MRI. The purpose of this study was to assess whether interval change in DWI and perfusion MRI parameters can differentiate pseudoprogression from progressive disease after treatment with SRS.
MATERIALS AND METHODS: Patients with apparent growth of cerebral metastases after SRS treatment who underwent pre- and post-SRS DWI, dynamic susceptibility contrast (DSC)-MRI, and perfusion dynamic contrast-enhanced (DCE)-MRI were retrospectively evaluated. Final assignment of pseudoprogression or progressive disease was determined at 6-month follow-up imaging using the Response Assessment in Neuro-Oncology Brain Metastases criteria. Mean values of apparent diffusion coefficient (ADC), DCE-MRI-derived volume transfer constant (Ktrans), and DSC-MRI-derived relative cerebral blood volume (CBV) from pre- and post-SRS MRI scans were compared between groups using univariate and regression analysis. Fisher exact test was used to compare interval change of imaging biomarkers.
RESULTS: Of 102 cerebral metastases evaluated, 32 lesions in 29 patients met our inclusion criteria. The mean duration of follow-up was 7.2 months (range, 6-14 months). Twenty-two lesions were determined as pseudoprogression, and 10 lesions were determined as progressive disease using the Response Assessment in Neuro-Oncology Brain Metastases criteria at 6-month follow-up MRI. The interval change pattern of our imaging parameters matched the expected patterns of treatment response for ADC (23/32 lesions; 72%; p = 0.055; odds ratio, 5.1), Ktrans (24/32 lesions; 75%; p = 0.006; odds ratio, 19.2), and relative CBV (27/32 lesions; 84%; p = 0.001; odds ratio, 25.3).
Pseudoprogression can be distinguished from disease progression in cerebral metastases treated with SRS via an interval decrease in relative CBV and Ktrans values 3).