User Tools

Site Tools


xlif

XLIF

see also Lateral lumbar interbody fusion (LLIF)

The XLIF (eXtreme Lateral Lumbar Interbody Fusion) is an approach to spinal fusion in which the surgeon accesses the intervertebral disc space and fuses the lumbar spine (low back) using a surgical approach from the side (lateral) rather than from the front (anterior) or the back (posterior).

The XLIF approach allows for anterior access to the disc space without an approach surgeon or the complications of an anterior intra-abdominal procedure 1).

Indications

The XLIF is one of a number of spinal fusion options that a surgeon may recommend to treat specific types of lumbar spinal disorders, such as lumbar degenerative disc disease, spondylolisthesis, scoliosis and deformity and some recurrent lumbar disc herniations and types of lumbar stenosis. It cannot be used for all types of lumbar conditions for which spinal fusion is a treatment option. For example, it cannot treat conditions at the lowest level of the spine, L5-S1 or for some people at L4-L5.

Whilst the available data is limited, minimally invasive XLIF procedures appear to be a promising alternative for the treatment of scoliosis, with improved functional VAS and Oswestry disability index outcomes and restored coronal deformity. Future comparative studies are warranted to assess the long term benefits and risks of XLIF compared to anterior and posterior procedures 2).

A study suggests that XLIF may be a safe and effective alternative to ALIF for the treatment of spondylodiscitis 3).

Fusion rate

Reports of XLIF fusion rate in the literature vary from 85 to 93 % at 1-year follow-up 4).

Complications

Transient ipsilateral thigh numbness, pain and/or hip flexor weakness is a frequent post-operative finding most commonly when the L4-5 level is instrumented. Dense femoral nerve palsy is a debilitating complication that may occur despite intra-operative neurophysiologic monitoring 5).

A anatomical study suggests that positioning the dilator and/or retractor in a posterior position of the disc space may result in nerve injury to the lumbosacral plexus, especially at the L4-5 level. The risk of injuring inherent nerve branches directed to the psoas muscle as well as injury to the genitofemoral nerve do still exist 6).

Videos

see XLIF Videos

Case series

A retrospective review found six patients who met strict operative criteria including instability, intractable pain, neurological deficit, and disease progression. All patients were non-ambulatory before surgery because of intractable back pain. The patients underwent standard lateral minimally invasive surgery using either the extreme lateral interbody fusion (NuVasive, San Diego, CA, USA) or direct lateral interbody fusion (Medtronic Sofamor Danek, Memphis, TN, USA) system. The patients underwent debridement with a discectomy and partial or complete corpectomy, with polyetheretherketone or titanium cage placement. Two patients had additional posterior fixation with percutaneous pedicle screws, and none had immediate perioperative complications. The postoperative CT scans demonstrated satisfactory debridement and hardware placement. All patients experienced significant pain improvement and could ambulate within a few days of surgery. So far, the 1year follow-up data have demonstrated stable hardware with solid fusion and continued pain improvements. One patient demonstrated hardware failure secondary to refractory infection, 2months postoperatively, and required additional posterior decompression and debridement with pedicle screw fixation. The lateral transpsoas approach permits debridement and fixation coupled with percutaneous pedicle screw fixation to further stabilize the spine in a minimally invasive fashion. Due to the significant comorbidities in this patient population, a minimally invasive approach is a suitable surgical technique. A close follow-up period is necessary to detect early hardware failure which may necessitate more extensive treatment 7).

Literature

Related to the development and diffusion of ALIF and XLIF, it is possible to correct sagittal malalignment in selected cases of lumbar degenerative discopathy with relatively low invasiveness. Still, the malposition or the inappropriate size of the implanted cages may lead to the subsidence of the vertebral endplates with loss of correction as well as a decrease in the potential to restore spinal biomechanics in the long run. The aim of a study of Tartara et al. was to evaluate the safety, feasibility, and preliminary clinical and radiological results when using custom-made, trabecular titanium cages in ALIF and XLIF procedures.

They prospectively evaluated 18 consecutive patients who underwent either an ALIF or an XLIF procedure with the implant of a custom-made, trabecular titanium cage for lumbar degenerative disease with sagittal imbalance, with a minimum of 1-year clinical and radiological follow-up.

After a mean follow-up of 14 months, the Oswestry score dropped to a mean of 13 from a preoperative value of 48 (p < 0.0001). Lumbar lordosis was significantly improved, especially in the lower lumbar segment L4-S1 (+ 11 ± 7°; p < 0.0001). No cases of subsidence were noted.

Custom-made, trabecular titanium cages allowed a segmental, steady, durable sagittal correction via ALIF and XLIF approaches. The absence of cage subsidence at 1 year encourages further studies on a larger cohort with longer follow-up 8).


To compare imaging indicators and clinical effects of extreme lateral lumbar interbody fusion (XLIF) using allogeneic bone, autologous bone marrow + allogeneic bone, and rh BMP2 + allogeneic bone as bone graft materials in the treatment of degenerative lumbar diseases.This was a retrospective study of 93 patients with lumbar interbody fusion who underwent the extreme lateral approach from May 2016 to December 2017. According to the different bone graft materials, patients were divided into allogenic bone groups (group A, 31 cases), rhBMP-2 + allogeneic bone (group B, 32 cases), and autologous bone marrow + allogeneic bone (group C, 30 cases). There were no significant differences in gender, age, lesion segment, preoperative intervertebral space height, and preoperative Oswestry Dysfunction Index (ODI) and visual analog scale (VAS) scores among the 3 groups (P > .05). Intervertebral space height, bone graft fusion rate, and ODI and VAS scores were compared immediately after surgery, and at 3, 6, and 12 months after surgery. All groups were followed up for 12 months. The intervertebral space height was significantly higher in the 3 groups immediately after surgery and at 3, 6, and 12 months after surgery, in comparison to before surgery (P < .05). There was no significant difference in the intervertebral space height among the 3 groups immediately after surgery and at 3, 6, and 12 months after surgery (P > .05). The fusion rate of group B and C was higher than that of groups A at 3, 6, and 12 months after surgery (P < .05). In the 3 groups, the VAS and ODI scores at 3, 6, and 12 months after surgery were significantly improved compared with the preoperative scores (P < .05). The VAS and ODI scores in groups B and C were significantly higher than those in group A (P < .05), but there was no significant difference between groups B and C (P > .05). The rhBMP-2 + allograft bone combination had good clinical effects and high fusion rate in XLIF 9).


Lateral lumbar interbody fusion (LLIF) and bilateral percutaneous pedicle fixation are valuable, minimally invasive lateral approaches used to treat symptomatic degenerative disc disease. In the current procedure, the patient's position on the operating table is changed after LLIF surgery from the lateral decubitus to the prone position. The ability to perform both approaches with the patient in the same position should reduce operation time. Use of a guide wire is problematic during percutaneous pedicle screw (PPS) insertion using fluoroscopy with the patient in the lateral decubitus position. A new guide wire-less PPS system may solve this problem and reduce operation time. Here, we evaluated the operative data and efficacy for this technique.

This study included 30 patients (aged 70.8 ± 8.5 years; 17 men, 13 women) who underwent a combined operation (indirect decompression) using extreme lateral interbody fusion (XLIF) with only a single level for lumbar spinal canal stenosis and lumbar degenerative spondylolisthesis. Patient demographics and operative data were compared between two groups: patients who remained in the lateral decubitus position for pedicle screw fixation (L group) and those turned to the prone position (P group). Radiographic assessment was performed using pre- and postoperative anteroposterior and lateral lumbar films with measurement of lumbar lordosis, segmental lordosis, and segmental translation.

RESULTS: We analyzed 18 patients in the P group and 12 in the L group. Age, sex, height, body weight, body mass index, estimated blood loss, and length of stay did not differ between groups. The operation time was 34 min shorter for the L group (P group 111.9 ± 25.0 vs. L group 77.5 ± 22.2 min, p < 0.01). Pre- and postoperative lordosis, segmental lordosis, and segmental translation did not differ significantly between groups.

CONCLUSIONS: A single position after XLIF surgery is a feasible modification to the standard procedure when used with fluoroscopy and a guide wire-less PPS system. The time saved is the main advantage of inserting the PPS with the patient in the lateral decubitus position without repositioning. Use of the lateral PPS with a guide wire-less technique may help improve operative efficiency and reduce cost 10).


Prospective cohort study.

OBJECTIVES: Evidence on predicting the success of indirect decompression via extreme lateral interbody fusion (XLIF) is scarce. The authors investigated if patients who could achieve a pain-free position preoperatively would derive clinical benefit from XLIF without direct decompression.

METHODS: Data from 50 consecutive patients who underwent XLIF with and without direct decompression by a single surgeon from January 2014 to August 2017 was collected. Primary outcome is the rate of failure of patients who underwent XLIF without direct decompression, characterized by persistence of pain postoperatively that required reoperations within 6 months postoperatively. Secondary outcomes are clinical outcomes and patient-reported quality of life outcome data, including visual analogue scale for leg (VASL) and back (VASB) pain, Oswetry Disability Index (ODI), and Physical Component Score (PCS) and Mental Component Score (MCS) of SF-12, for up to 2 years postoperatively.

RESULTS: One patient with preoperative dynamic posture-related pain who underwent XLIF without direct decompression subsequently had a reoperation due to persisting pain. Statistically significant improvement was achieved across all patient reported outcomes (P < .05): improvement of 68% for VASL, 61% for VASB, 50% for ODI, 33% for PCS, and 11% for MCS of SF-12 at last follow-up. Six patients had thigh symptoms that resolved.

CONCLUSION: The simple clinical criterion based on postural pain status preoperatively may help clinicians in patient selection for indirect decompression of XLIF without the need for direct decompression. Further studies with larger cohorts are warranted to establish the validity of the algorithm 11).


Hiyama et al. examined the ability of the extreme lateral interbody fusion (XLIF) procedure to restore coronal and sagittal alignments for patients with adult spinal deformity (ASD) using computed tomography multiplanar reconstruction (CT-MPR). Thirty-eight patients with ASD undergoing correction and fixation with XLIF at 114 levels were studied. The coronal segmental Cobb angle, coronal regional Cobb angle (L1-5), sagittal segmental Cobb angle, sagittal regional Cobb angle (L1-5), intervertebral disc height and, vertebral body rotation (VBR) were measured before and after of XLIF surgery using CT-MPR. The mean sagittal segmental Cobb angle, the coronal segmental Cobb angle, and VBR were corrected from 5.0° to 9.0°, from 6.3° to 4.3° and from 12.2° to 10.8°, respectively. The mean of the intervertebral disc heights increased significantly from 6.0 mm to 10.4 mm postoperatively. Although increases in coronal segmental Cobb, sagittal segmental Cobb, and intervertebral disc height at each level were significant, there were no significant differences in each parameter acquired by spine levels. The results also showed that it was difficult for L4/5 level to obtain the most postoperative coronal Cobb, sagittal Cobb and intervertebral disc height. This study evaluated the alignment improvement effect of stand-alone XLIF in ASD patients using CT-MPR. For the lower lumbar spine, it is difficult to obtain a lordosis more than 10 degrees with stand-alone XLIF for correcting ASD. Therefore, it is thought that correction such as osteotomy or compression technique to the posterior fusion may be necessary during the 2nd stage surgery 12).


Nomura et al. sought to quantify the results of clinical and radiological analyses of extreme lateral interbody fusion (XLIF) plus percutaneous pedicle screw (PPS) fixation for patients with lumbar spinal stenosis (LSS) by focusing on the distinct mechanism of indirect decompression.

Data obtained from a total of 37 patients with 47 surgical sites were retrospectively analyzed. Clinical outcomes for all patients were evaluated using the Japanese Orthopaedic Association (JOA) score and the improvement rate of the JOA score. Preoperative and postoperative magnetic resonance images were used to measure the transverse areas of both the dural sac (DS area) and ligamentous flavum (LF area) in the axial sections and the length of the intervertebral disc bulge (DB length) in sagittal sections. Then, the rate of change (RC) of the DS area (RC-DS), the RC of the LF area (RC-LF), and the RC of the DB length (RC-DB) from the preoperative period to the postoperative period were calculated. Furthermore, we divided all surgical sites into the small expansion group (SE group; RC-DS <150%) and large expansion group (LE group; RC-DS ≥200%) according to the degree of RC-DS.

Preoperative clinical symptoms improved significantly after surgery for all patients regardless of whether the RC-DS was large or small. RC-DS, RC-LF, and RC-DB were approximately 203%, 74%, and 37%, respectively. Moreover, we found that the bulging was significantly shorter in the LE group than in the SE group, although there was no difference in the RC-LF between the LE group and SE group.

They suggest that indirect decompression after XLIF is particularly influenced by the degree of reduction in DB 13).


The goal of the current study was to compare the perioperative and post-operative outcomes of eXtreme lateral trans-psoas approach (XLIF) versus anterior lumbar interbody fusion (ALIF) for single level degenerative spondylolisthesis. The ideal approach for degenerative spondylolisthesis remains controversial.

Consecutive patients undergoing single level XLIF (n=21) or ALIF (n=54) for L4-5 degenerative spondylolisthesis between 2008-2012 from a single academic center were retrospectively reviewed. Groups were compared for peri-operative data (estimated blood loss, operative time, adjunct procedures or additional implants), radiographic measurements (L1-S1 cobb angle, disc height, fusion grade, subsidence), 30-day complications (infection, DVT/PE, weakness/paresthesia, etc.), and patient reported outcomes (leg and back Numerical Rating Scale, and Oswestry Disability Index).

Estimated blood loss was significantly lower for XLIF [median 100; interquartile range (IQR), 50-100 mL] than for ALIF (median 250; IQR, 150-400 mL; P<0.001), including after adjusting for significantly higher rates of posterior decompression in the ALIF group. There were no significant differences in rates of complications within 30 days, radiographic outcomes, or in re-operation rates. Both groups experienced significant pain relief post-operatively.

The lateral trans-psoas approach is associated with diminished blood loss compared to the anterior approach in the treatment of degenerative spondylolisthesis. We were unable to detect differences in radiographic outcomes, complication rates, or patient reported outcomes. Continued efforts to directly compare approaches for specific indications will minimize complications and improve outcomes. Further studies will continue to define indications for lateral versus anterior approach to lumbar spine for degenerative spondylolisthesis 14).


A literature search was performed on Pubmed and Web of Science using combinations of the following keywords and their acronyms: lateral lumbar interbody fusion (LLIF), oblique lateral interbody fusion (OLIF), anterior-to-psoas approach (ATP), direct lateral interbody fusion (DLIF), extreme lateral interbody fusion (XLIF), and minimally invasive surgery (MIS). All results from January 2016 through January 2019 were evaluated and all studies evaluating complications and/or outcomes were included in the review.

The transient neurological deficit, particularly sensorimotor symptoms of the ipsilateral thigh, remains the most common complication seen in LLIF. Best available current literature demonstrates that approximately 30-40% of patients have postoperative deficits, primarily of the proximal leg. Permanent symptoms are less common, affecting 4-5% of cases. Newer techniques to reduce this rate include different retractors, direct visualization of the nerves, and intraoperative neuromonitoring. OLIF may have lower deficit rates, but the available literature is limited. Subsidence rates in both LLIF and OLIF are comparable to ALIF (anterior lumbar interbody fusion), but further study is required. Supplemental posterior fixation is an active area of investigation that shows favorable biomechanical results, but additional clinical studies are needed. Minimally invasive lumbar interbody fusion techniques continue to advance rapidly. As these techniques continue to mature, evidence-based risk-stratification systems are required to better guide both the patient and clinician in the joint decision-making process for the optimal surgical approach 15).

Unclassified

9: Lu T, Lu Y. Comparison of Biomechanical Performance Among Posterolateral Fusion and Transforaminal, Extreme, and Oblique Lumbar Interbody Fusion: A Finite Element Analysis. World Neurosurg. 2019 Sep;129:e890-e899. doi: 10.1016/j.wneu.2019.06.074. Epub 2019 Jun 19. PubMed PMID: 31226452.

10: Cho JY, Goh TS, Son SM, Kim DS, Lee JS. Comparison of Anterior Approach and Posterior Approach to Instrumented Interbody Fusion for Spondylolisthesis: A Meta-analysis. World Neurosurg. 2019 Sep;129:e286-e293. doi: 10.1016/j.wneu.2019.05.130. Epub 2019 May 23. PubMed PMID: 31129223.

11: McGowan JE, Kanter AS. Lateral Approaches for the Surgical Treatment of Lumbar Spondylolisthesis. Neurosurg Clin N Am. 2019 Jul;30(3):313-322. doi: 10.1016/j.nec.2019.02.005. Review. PubMed PMID: 31078232.

12: Nomoto EK, Fogel GR, Rasouli A, Bundy JV, Turner AW. Biomechanical Analysis of Cortical Versus Pedicle Screw Fixation Stability in TLIF, PLIF, and XLIF Applications. Global Spine J. 2019 Apr;9(2):162-168. doi: 10.1177/2192568218779991. Epub 2018 Jul 31. PubMed PMID: 30984495; PubMed Central PMCID: PMC6448199.

13: Li J, Wang X, Sun Y, Zhang F, Gao Y, Li Z, Ding W, Shen Y, Zhang W. Safety Analysis of Two Anterior Lateral Lumbar Interbody Fusions at the Initial Stage of Learning Curve. World Neurosurg. 2019 Jul;127:e901-e909. doi: 10.1016/j.wneu.2019.03.294. Epub 2019 Apr 6. PubMed PMID: 30959256.

14: Ono K, Ohmori K, Hori T. Clinical and Radiological Outcomes of Corrective Surgery on Adult Spinal Deformity Patients: Comparison of Short and Long Fusion. Adv Orthop. 2019 Mar 3;2019:9492486. doi: 10.1155/2019/9492486. eCollection 2019. PubMed PMID: 30941223; PubMed Central PMCID: PMC6421035.

15: Walker CT, Farber SH, Cole TS, Xu DS, Godzik J, Whiting AC, Hartman C, Porter RW, Turner JD, Uribe J. Complications for minimally invasive lateral interbody arthrodesis: a systematic review and meta-analysis comparing prepsoas and transpsoas approaches. J Neurosurg Spine. 2019 Jan 25:1-15. doi: 10.3171/2018.9.SPINE18800. [Epub ahead of print] Review. PubMed PMID: 30684932.

16: Ruchirawan S, Fujita N, Yagi M, Tsuji O, Okada E, Nagoshi N, Ishii K, Nakamura M, Matsumoto M, Watanabe K. Acute Paraparesis Due to Protrusion of a Disc Following Lateral Interbody Fusion for Degenerative Kyphoscoliosis: A Case Report. JBJS Case Connect. 2019 Jan-Mar;9(1):e8. doi: 10.2106/JBJS.CC.18.00002. PubMed PMID: 30676346.

17: Schnake KJ, Rappert D, Storzer B, Schreyer S, Hilber F, Mehren C. [Lumbar fusion-Indications and techniques]. Orthopade. 2019 Jan;48(1):50-58. doi: 10.1007/s00132-018-03670-w. Review. German. PubMed PMID: 30552449.

18: Paterakis KN, Brotis AG, Paschalis A, Tzannis A, Fountas KN. Extreme lateral lumbar interbody fusion (XLIF) in the management of degenerative scoliosis: a retrospective case series. J Spine Surg. 2018 Sep;4(3):610-615. doi: 10.21037/jss.2018.07.11. PubMed PMID: 30547126; PubMed Central PMCID: PMC6261754.

19: Haines CM, Samtani RG, Bernatz JT, Abugideiri M, O'Brien JR. Far-lateral Disc Herniation Treated by Lateral Lumbar Interbody Fusion without Complete Fragment Excision: A Case Report and Review of the Literature. Cureus. 2018 Oct 2;10(10):e3404. doi: 10.7759/cureus.3404. PubMed PMID: 30533338; PubMed Central PMCID: PMC6279004.

20: Carlson BB, Saville P, Dowdell J, Goto R, Vaishnav A, Gang CH, McAnany S, Albert TJ, Qureshi S. Restoration of lumbar lordosis after minimally invasive transforaminal lumbar interbody fusion: a systematic review. Spine J. 2019 May;19(5):951-958. doi: 10.1016/j.spinee.2018.10.017. Epub 2018 Dec 6. Review. PubMed PMID: 30529420.

21: Alvi MA, Alkhataybeh R, Wahood W, Kerezoudis P, Goncalves S, Murad MH, Bydon M. The impact of adding posterior instrumentation to transpsoas lateral fusion: a systematic review and meta-analysis. J Neurosurg Spine. 2018 Nov 2;30(2):211-221. doi: 10.3171/2018.7.SPINE18385. PubMed PMID: 30485206.

22: Macki M, Anand SK, Surapaneni A, Park P, Chang V. Subsidence Rates After Lateral Lumbar Interbody Fusion: A Systematic Review. World Neurosurg. 2019 Feb;122:599-606. doi: 10.1016/j.wneu.2018.11.121. Epub 2018 Nov 23. PubMed PMID: 30476670.

23: Timothy J, Pal D, Akhunbay-Fudge C, Knights M, Frost A, Derham C, Selvanathan S. Extreme lateral interbody fusion (XLIF) as a treatment for acute spondylodiscitis: Leeds spinal unit experience. J Clin Neurosci. 2019 Jan;59:213-217. doi: 10.1016/j.jocn.2018.10.063. Epub 2018 Nov 6. PubMed PMID: 30409530.

24: Chen E, Xu J, Yang S, Zhang Q, Yi H, Liang D, Lan S, Duan M, Wu Z. Cage Subsidence and Fusion Rate in Extreme Lateral Interbody Fusion with and without Fixation. World Neurosurg. 2019 Feb;122:e969-e977. doi: 10.1016/j.wneu.2018.10.182. Epub 2018 Nov 4. PubMed PMID: 30404061.

25: Buric J, Conti R, Peressutti S. Lumbar Lordosis Correction With Interbody Hyperlordotic Cages: Initial Experience, Learning Curve, Technical Aspects, and Complication Incidence. Int J Spine Surg. 2018 Aug 3;12(2):185-189. doi: 10.14444/5026. eCollection 2018 Apr. PubMed PMID: 30276078; PubMed Central PMCID: PMC6159664.

26: Hayama S, Nakano A, Nakaya Y, Baba I, Fujiwara K, Fujishiro T, Yano T, Usami Y, Kino K, Obo T, Neo M. The Evaluation of Indirect Neural Decompression After Lateral Lumbar Interbody Fusion Using Intraoperative Computed Tomography Myelogram. World Neurosurg. 2018 Dec;120:e710-e718. doi: 10.1016/j.wneu.2018.08.146. Epub 2018 Aug 27. PubMed PMID: 30165216.

27: Uribe JS, Schwab F, Mundis GM, Xu DS, Januszewski J, Kanter AS, Okonkwo DO, Hu SS, Vedat D, Eastlack R, Berjano P, Mummaneni PV. The comprehensive anatomical spinal osteotomy and anterior column realignment classification. J Neurosurg Spine. 2018 Nov 1;29(5):565-575. doi: 10.3171/2018.4.SPINE171206. PubMed PMID: 30141765.

28: Blecher R, Yilmaz E, Moisi M, Oskouian RJ, Chapman J. Extreme Lateral Interbody Fusion Complicated by Fungal Osteomyelitis: Case Report and Quick Review of the Literature. Cureus. 2018 May 31;10(5):e2719. doi: 10.7759/cureus.2719. PubMed PMID: 30079285; PubMed Central PMCID: PMC6067835.

29: Fogel GR, Rosen L, Koltsov JCB, Cheng I. Neurologic adverse event avoidance in lateral lumbar interbody fusion: technical considerations using muscle relaxants. J Spine Surg. 2018 Jun;4(2):247-253. doi: 10.21037/jss.2018.06.01. PubMed PMID: 30069514; PubMed Central PMCID: PMC6046327.

30: Xu DS, Paluzzi J, Kanter AS, Uribe JS. Anterior Column Release/Realignment. Neurosurg Clin N Am. 2018 Jul;29(3):427-437. doi: 10.1016/j.nec.2018.03.008. Review. PubMed PMID: 29933810.

31: Sun C, Wang H, Jiang J, Lu F, Ma X, Xia X. Length of Lumbar Interbody Cage Using Radiological Measurements of Chinese Endplates and the Apophyseal Ring. World Neurosurg. 2018 Aug;116:e1204-e1213. doi: 10.1016/j.wneu.2018.05.234. Epub 2018 Jun 7. PubMed PMID: 29886299.

32: Attenello J, Chang C, Lee YP, Zlomislic V, Garfin SR, Allen RT. Comparison of lateral lumbar interbody fusion (LLIF) with open versus percutaneous screw fixation for adult degenerative scoliosis. J Orthop. 2018 Mar 20;15(2):486-489. doi: 10.1016/j.jor.2018.03.017. eCollection 2018 Jun. PubMed PMID: 29881182; PubMed Central PMCID: PMC5990223.

33: Tamburrelli FC, Meluzio MC, Burrofato A, Perna A, Proietti L. Minimally invasive surgery procedure in isthmic spondylolisthesis. Eur Spine J. 2018 Jun;27(Suppl 2):237-243. doi: 10.1007/s00586-018-5627-8. Epub 2018 May 11. PubMed PMID: 29752555.

34: Vivas AC, Januszewski J, Hajirawala L, Paluzzi JM, Gandhi SV, Uribe JS. Incisional Hernia After Minimally Invasive Lateral Retroperitoneal Surgery: Case Series and Review of the Literature. Oper Neurosurg (Hagerstown). 2019 Mar 1;16(3):368-373. doi: 10.1093/ons/opy089. PubMed PMID: 29718425.

35: Kono Y, Gen H, Sakuma Y, Koshika Y. Comparison of Clinical and Radiologic Results of Mini-Open Transforaminal Lumbar Interbody Fusion and Extreme Lateral Interbody Fusion Indirect Decompression for Degenerative Lumbar Spondylolisthesis. Asian Spine J. 2018 Apr;12(2):356-364. doi: 10.4184/asj.2018.12.2.356. Epub 2018 Apr 16. PubMed PMID: 29713419; PubMed Central PMCID: PMC5913029.

36: Ricciardi L, Stifano V, Proietti L, Perna A, Della Pepa GM, La Rocca G, Olivi A, Polli FM. Intraoperative and Postoperative Segmental Lordosis Mismatch: Analysis of 3 Fusion Techniques. World Neurosurg. 2018 Jul;115:e659-e663. doi: 10.1016/j.wneu.2018.04.126. Epub 2018 Apr 27. PubMed PMID: 29709745.

37: Xu DS, Walker CT, Godzik J, Turner JD, Smith W, Uribe JS. Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review. Ann Transl Med. 2018 Mar;6(6):104. doi: 10.21037/atm.2018.03.24. Review. PubMed PMID: 29707553; PubMed Central PMCID: PMC5900070.

38: Walker CT, Xu DS, Godzik J, Turner JD, Uribe JS, Smith WD. Minimally invasive surgery for thoracolumbar spinal trauma. Ann Transl Med. 2018 Mar;6(6):102. doi: 10.21037/atm.2018.02.10. Review. PubMed PMID: 29707551; PubMed Central PMCID: PMC5900064.

39: Oyelese AA, Fridley J, Choi DB, Telfeian A, Gokaslan ZL. Minimally invasive direct lateral, retroperitoneal transforaminal approach for large L1-2 disc herniations with intraoperative CT navigational assistance: technical note and report of 3 cases. J Neurosurg Spine. 2018 Jul;29(1):46-53. doi: 10.3171/2017.11.SPINE17509. Epub 2018 Apr 20. PubMed PMID: 29676674.

40: Yilmaz E, Iwanaga J, Moisi M, Blecher R, Abdul-Jabbar A, Tawfik T, Oskouian RJ, Tubbs RS. Risks of Colon Injuries in Extreme Lateral Approaches to the Lumbar Spine: An Anatomical Study. Cureus. 2018 Jan 29;10(1):e2122. doi: 10.7759/cureus.2122. PubMed PMID: 29607270; PubMed Central PMCID: PMC5875976.

41: Riley MR, Doan AT, Vogel RW, Aguirre AO, Pieri KS, Scheid EH. Use of motor evoked potentials during lateral lumbar interbody fusion reduces postoperative deficits. Spine J. 2018 Oct;18(10):1763-1778. doi: 10.1016/j.spinee.2018.02.024. Epub 2018 Apr 3. PubMed PMID: 29505853.

42: Goyal A, Kerezoudis P, Alvi MA, Goncalves S, Bydon M. Outcomes following minimally invasive lateral transpsoas interbody fusion for degenerative low grade lumbar spondylolisthesis: A systematic review. Clin Neurol Neurosurg. 2018 Apr;167:122-128. doi: 10.1016/j.clineuro.2018.02.020. Epub 2018 Feb 16. PubMed PMID: 29476935.

43: Xu CH, Wu ZH, Chen RC, Zhong HF, Zhang QS, Liu N, Zhang B. [Case-control study of therapeutic effects between extreme lateral interbody fusion and conventional posterior operation for the treatment of upper lumbar disc herniation]. Zhongguo Gu Shang. 2017 Nov 25;30(11):994-999. doi: 10.3969/j.issn.1003-0034.2017.11.005. Chinese. PubMed PMID: 29457388.

44: Donnarumma P, Tarantino R, Nigro L, Fragale M, Bassani R, Delfini R. Revision surgery for degenerative spinal deformity: a case report and review of the literature. Spinal Cord Ser Cases. 2017 Nov 30;3:17085. doi: 10.1038/s41394-017-0008-9. eCollection 2017. PubMed PMID: 29423291; PubMed Central PMCID: PMC5798913.

45: Ebata S, Ohba T, Haro H. Adequate cage placement for a satisfactory outcome after lumbar lateral interbody fusion with MRI and CT analysis. Spine Surg Relat Res. 2018 Jan 27;2(1):53-59. doi: 10.22603/ssrr.2017-0037. eCollection 2018. PubMed PMID: 31440647; PubMed Central PMCID: PMC6698541.

46: Hu XD, Ma WH, Jiang WY, Ruan CY, Chen YL. [The shor-term clinical outcomes and safety of extreme lateral interbody fusion combined with percutaneous pedicle screw fixation for the treatment of degenerative lumbar disease]. Zhongguo Gu Shang. 2017 Feb 25;30(2):147-151. doi: 10.3969/j.issn.1003-0034.2017.02.011. Chinese. PubMed PMID: 29350006.

47: Xu DS, Bach K, Uribe JS. Minimally invasive anterior and lateral transpsoas approaches for closed reduction of grade II spondylolisthesis: initial clinical and radiographic experience. Neurosurg Focus. 2018 Jan;44(1):E4. doi: 10.3171/2017.10.FOCUS17574. PubMed PMID: 29290134.

48: Campbell PG, Nunley PD, Cavanaugh D, Kerr E, Utter PA, Frank K, Stone M. Short-term outcomes of lateral lumbar interbody fusion without decompression for the treatment of symptomatic degenerative spondylolisthesis at L4-5. Neurosurg Focus. 2018 Jan;44(1):E6. doi: 10.3171/2017.10.FOCUS17566. PubMed PMID: 29290128.

49: Miyazaki M, Kanezaki S, Notani N, Ishihara T, Tsumura H. Spondylectomy and lateral lumbar interbody fusion for thoracolumbar kyphosis in an adult with achondroplasia: A case report. Medicine (Baltimore). 2017 Dec;96(49):e8983. doi: 10.1097/MD.0000000000008983. PubMed PMID: 29245270; PubMed Central PMCID: PMC5728885.

50: Segawa T, Inanami H, Koga H. Clinical evaluation of microendoscopy-assisted extreme lateral interbody fusion. J Spine Surg. 2017 Sep;3(3):398-402. doi: 10.21037/jss.2017.08.09. PubMed PMID: 29057349; PubMed Central PMCID: PMC5637183.

51: Ohba T, Ebata S, Haro H. Comparison of serum markers for muscle damage, surgical blood loss, postoperative recovery, and surgical site pain after extreme lateral interbody fusion with percutaneous pedicle screws or traditional open posterior lumbar interbody fusion. BMC Musculoskelet Disord. 2017 Oct 16;18(1):415. doi: 10.1186/s12891-017-1775-y. PubMed PMID: 29037186; PubMed Central PMCID: PMC5644152.

52: Acosta FL Jr, Mehta VA, Arakelyan A, Drazin D, Cortland C, Hsieh PC, Liu JC, Pham MH. A Novel Lumbar Motion Segment Classification to Predict Changes in Segmental Sagittal Alignment After Lateral Interbody Fixation. Global Spine J. 2017 Oct;7(7):642-647. doi: 10.1177/2192568217723925. Epub 2017 Aug 15. PubMed PMID: 28989843; PubMed Central PMCID: PMC5624384.

53: Navarro-Ramirez R, Berlin C, Lang G, Hussain I, Janssen I, Sloan S, Askin G, Avila MJ, Zubkov M, Härtl R. A New Volumetric Radiologic Method to Assess Indirect Decompression After Extreme Lateral Interbody Fusion Using High-Resolution Intraoperative Computed Tomography. World Neurosurg. 2018 Jan;109:59-67. doi: 10.1016/j.wneu.2017.07.155. Epub 2017 Aug 5. PubMed PMID: 28826705.

54: Janssen I, Lang G, Navarro-Ramirez R, Jada A, Berlin C, Hilis A, Zubkov M, Gandevia L, Härtl R. Can Fan-Beam Interactive Computed Tomography Accurately Predict Indirect Decompression in Minimally Invasive Spine Surgery Fusion Procedures? World Neurosurg. 2017 Nov;107:322-333. doi: 10.1016/j.wneu.2017.07.167. Epub 2017 Aug 7. PubMed PMID: 28797980.

55: Januszewski J, Beckman JM, Bach K, Vivas AC, Uribe JS. Indirect decompression and reduction of lumbar spondylolisthesis does not result in higher rates of immediate and long term complications. J Clin Neurosci. 2017 Nov;45:218-222. doi: 10.1016/j.jocn.2017.07.007. Epub 2017 Jul 29. PubMed PMID: 28765063.

56: Wang TY, Nayar G, Brown CR, Pimenta L, Karikari IO, Isaacs RE. Bony Lateral Recess Stenosis and Other Radiographic Predictors of Failed Indirect Decompression via Extreme Lateral Interbody Fusion: Multi-Institutional Analysis of 101 Consecutive Spinal Levels. World Neurosurg. 2017 Oct;106:819-826. doi: 10.1016/j.wneu.2017.07.045. Epub 2017 Jul 19. PubMed PMID: 28735130.

57: Wagner R, Telfeian AE, Krzok G, Iprenburg M. Transforaminal Endoscopic Decompression for Displaced End Plate Fracture After Lateral Lumbar Interbody Fusion: Technical Note. World Neurosurg. 2017 Oct;106:26-29. doi: 10.1016/j.wneu.2017.06.084. Epub 2017 Jun 20. PubMed PMID: 28645595.

58: Abel NA, Januszewski J, Vivas AC, Uribe JS. Femoral nerve and lumbar plexus injury after minimally invasive lateral retroperitoneal transpsoas approach: electrodiagnostic prognostic indicators and a roadmap to recovery. Neurosurg Rev. 2018 Apr;41(2):457-464. doi: 10.1007/s10143-017-0863-7. Epub 2017 May 30. PubMed PMID: 28560607.

59: Lang G, Navarro-Ramirez R, Gandevia L, Hussain I, Nakhla J, Zubkov M, Härtl R. Elimination of Subsidence with 26-mm-Wide Cages in Extreme Lateral Interbody Fusion. World Neurosurg. 2017 Aug;104:644-652. doi: 10.1016/j.wneu.2017.05.035. Epub 2017 May 16. PubMed PMID: 28526641.

60: Klimov VS, Vasilenko II, Evsyukov AV, Amelina EV. [Impact of sagittal balance parameters on life quality in elderly and senile patients after surgery for degenerative lumbar spine stenosis]. Zh Vopr Neirokhir Im N N Burdenko. 2017;81(2):56-66. doi: 10.17116/neiro201781256-66. Russian. PubMed PMID: 28524126.

61: Formica M, Zanirato A, Cavagnaro L, Basso M, Divano S, Felli L, Formica C. Extreme lateral interbody fusion in spinal revision surgery: clinical results and complications. Eur Spine J. 2017 Oct;26(Suppl 4):464-470. doi: 10.1007/s00586-017-5115-6. Epub 2017 May 9. PubMed PMID: 28488095.

62: Schonauer C, Stienen MN, Gautschi OP, Schaller K, Tessitore E. Endoscope-Assisted Extreme-Lateral Interbody Fusion: Preliminary Experience and Technical Note. World Neurosurg. 2017 Jul;103:869-875.e3. doi: 10.1016/j.wneu.2017.04.110. Epub 2017 Apr 26. PubMed PMID: 28456736.

63: Sakai T, Sairyo K. Answer to the Letter to the Editor of C. Birkenmaier concerning “Rehydration of a degenerated disc on MRI synchronized with transition of Modic changes following stand-alone XLIF” by K. Kita, T. Sakai, M. Abe, Y. Takata and K. Sairyo (Eur Spine J; 2017). doi:10.1007/s00586-017-4945-6. Eur Spine J. 2017 Jun;26(6):1790-1791. doi: 10.1007/s00586-017-5096-5. Epub 2017 Apr 24. PubMed PMID: 28439663.

64: Birkenmaier C. Letter to the Editor concerning “Rehydration of a degenerated disc on MRI synchronized with transition of Modic changes following stand-alone XLIF” by K. Kita, T. Sakai, M. Abe, Y. Takata and K. Sairyo (Eur Spine J; 2017. doi:10.1007/s00586-017-4945-6). Eur Spine J. 2017 Jun;26(6):1789. doi: 10.1007/s00586-017-5094-7. Epub 2017 Apr 17. PubMed PMID: 28417235.

65: Tubbs RI, Gabel B, Jeyamohan S, Moisi M, Chapman JR, Hanscom RD, Loukas M, Oskouian RJ, Tubbs RS. Relationship of the lumbar plexus branches to the lumbar spine: anatomical study with application to lateral approaches. Spine J. 2017 Jul;17(7):1012-1016. doi: 10.1016/j.spinee.2017.03.011. Epub 2017 Mar 30. PubMed PMID: 28365495.

66: Ramieri A, Miscusi M, Domenicucci M, Raco A, Costanzo G. Surgical management of coronal and sagittal imbalance of the spine without PSO: a multicentric cohort study on compensated adult degenerative deformities. Eur Spine J. 2017 Oct;26(Suppl 4):442-449. doi: 10.1007/s00586-017-5042-6. Epub 2017 Mar 16. PubMed PMID: 28303383.

67: Fujibayashi S, Kawakami N, Asazuma T, Ito M, Mizutani J, Nagashima H, Nakamura M, Sairyo K, Takemasa R, Iwasaki M. Complications Associated With Lateral Interbody Fusion: Nationwide Survey of 2998 Cases During the First 2 Years of Its Use in Japan. Spine (Phila Pa 1976). 2017 Oct 1;42(19):1478-1484. doi: 10.1097/BRS.0000000000002139. PubMed PMID: 28252557.

68: Wang QY, Huang MG, Ou DQ, Xu YC, Dong JW, Yin HD, Chen W, Rong LM. One-stage extreme lateral interbody fusion and percutaneous pedicle screw fixation in lumbar spine tuberculosis. J Musculoskelet Neuronal Interact. 2017 Mar 1;17(1):450-455. PubMed PMID: 28250249; PubMed Central PMCID: PMC5383773.

69: Malham GM, Ellis NJ, Parker RM, Blecher CM, White R, Goss B, Seex KA. Maintenance of Segmental Lordosis and Disk Height in Stand-alone and Instrumented Extreme Lateral Interbody Fusion (XLIF). Clin Spine Surg. 2017 Mar;30(2):E90-E98. doi: 10.1097/BSD.0b013e3182aa4c94. PubMed PMID: 28207620.

70: Fujibayashi S, Otsuki B, Kimura H, Tanida S, Masamoto K, Matsuda S. Preoperative assessment of the ureter with dual-phase contrast-enhanced computed tomography for lateral lumbar interbody fusion procedures. J Orthop Sci. 2017 May;22(3):420-424. doi: 10.1016/j.jos.2017.01.009. Epub 2017 Feb 12. PubMed PMID: 28202301.

71: Lang G, Perrech M, Navarro-Ramirez R, Hussain I, Pennicooke B, Maryam F, Avila MJ, Härtl R. Potential and Limitations of Neural Decompression in Extreme Lateral Interbody Fusion-A Systematic Review. World Neurosurg. 2017 May;101:99-113. doi: 10.1016/j.wneu.2017.01.080. Epub 2017 Jan 31. Review. PubMed PMID: 28153620.

72: Kanna RM. Expert's comment concerning Grand Rounds case entitled “Rehydration of a degenerated disc on MRI synchronized with transition of Modic changes following stand-alone XLIF” by K. Kita, T. Sakai, M. Abe, Y. Takata and K. Sairyo (Eur Spine J; 2017: doi:10.1007/s00586-017-4945-6). Eur Spine J. 2017 Mar;26(3):632-634. doi: 10.1007/s00586-017-4952-7. Epub 2017 Feb 1. PubMed PMID: 28150049.

73: Kita K, Sakai T, Abe M, Takata Y, Sairyo K. Rehydration of a degenerated disc on MRI synchronized with transition of Modic changes following stand-alone XLIF. Eur Spine J. 2017 Mar;26(3):626-631. doi: 10.1007/s00586-017-4945-6. Epub 2017 Jan 31. PubMed PMID: 28144734.

74: Gragnaniello C, Seex K. Anterior to psoas (ATP) fusion of the lumbar spine: evolution of a technique facilitated by changes in equipment. J Spine Surg. 2016 Dec;2(4):256-265. doi: 10.21037/jss.2016.11.02. PubMed PMID: 28097242; PubMed Central PMCID: PMC5233851.

75: Guigui P, Ferrero E. Surgical treatment of degenerative spondylolisthesis. Orthop Traumatol Surg Res. 2017 Feb;103(1S):S11-S20. doi: 10.1016/j.otsr.2016.06.022. Epub 2016 Dec 30. Review. PubMed PMID: 28043848.

76: Parker RM, Malham GM. Comparison of a calcium phosphate bone substitute with recombinant human bone morphogenetic protein-2: a prospective study of fusion rates, clinical outcomes and complications with 24-month follow-up. Eur Spine J. 2017 Mar;26(3):754-763. doi: 10.1007/s00586-016-4927-0. Epub 2016 Dec 27. PubMed PMID: 28028645.

77: Keorochana G, Setrkraising K, Woratanarat P, Arirachakaran A, Kongtharvonskul J. Clinical outcomes after minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion for treatment of degenerative lumbar disease: a systematic review and meta-analysis. Neurosurg Rev. 2018 Jul;41(3):755-770. doi: 10.1007/s10143-016-0806-8. Epub 2016 Dec 24. Review. PubMed PMID: 28013419.

78: Januszewski J, Keem SK, Smith W, Beckman JM, Kanter AS, Oskuian RJ, Taylor W, Uribe JS. The Potentially Fatal Ogilvie's Syndrome in Lateral Transpsoas Access Surgery: A Multi-Institutional Experience with 2930 Patients. World Neurosurg. 2017 Mar;99:302-307. doi: 10.1016/j.wneu.2016.11.132. Epub 2016 Dec 5. PubMed PMID: 27923757.

79: Wang Q, Xu Y, Chen R, Dong J, Liu B, Rong L. A novel indication for a method in the treatment of lumbar tuberculosis through minimally invasive extreme lateral interbody fusion (XLIF) in combination with percutaneous pedicle screws fixation in an elderly patient: A case report. Medicine (Baltimore). 2016 Nov;95(48):e5303. PubMed PMID: 27902591; PubMed Central PMCID: PMC5134771.

80: Siu TL, Najafi E, Lin K. A radiographic analysis of cage positioning in lateral transpsoas lumbar interbody fusion. J Orthop. 2016 Nov 22;14(1):142-146. eCollection 2017 Mar. PubMed PMID: 27899848; PubMed Central PMCID: PMC5123043.

81: Navarro-Ramirez R, Lang G, Moriguchi Y, Elowitz E, Corredor JA, Avila MJ, Gotfryd A, Alimi M, Gandevia L, Härtl R. Are Locked Facets a Contraindication for Extreme Lateral Interbody Fusion? World Neurosurg. 2017 Apr;100:607-618. doi: 10.1016/j.wneu.2016.11.059. Epub 2016 Nov 22. PubMed PMID: 27888084.

82: Woods KR, Billys JB, Hynes RA. Technical description of oblique lateral interbody fusion at L1-L5 (OLIF25) and at L5-S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017 Apr;17(4):545-553. doi: 10.1016/j.spinee.2016.10.026. Epub 2016 Nov 21. PubMed PMID: 27884744.

83: Hayashi K. Unpredictable interference of new transcranial motor-evoked potential monitor against the implanted pacemaker. J Clin Anesth. 2016 Dec;35:230-231. doi: 10.1016/j.jclinane.2016.09.002. Epub 2016 Sep 23. PubMed PMID: 27871529.

84: Tessitore E, Melloni I, Gautschi OP, Zona G, Schaller K, Berjano P. Effect of mono- or bisegmental lordosizing fusion on short-term global and index sagittal balance: a radiographic study. J Neurosurg Sci. 2019 Apr;63(2):187-193. doi: 10.23736/S0390-5616.16.03776-0. Epub 2016 Nov 17. PubMed PMID: 27854109.

85: Epstein NE. Extreme lateral lumbar interbody fusion: Do the cons outweigh the pros? Surg Neurol Int. 2016 Sep 22;7(Suppl 25):S692-S700. eCollection 2016. PubMed PMID: 27843688; PubMed Central PMCID: PMC5054636.

86: Epstein NE. Non-neurological major complications of extreme lateral and related lumbar interbody fusion techniques. Surg Neurol Int. 2016 Sep 22;7(Suppl 25):S656-S659. eCollection 2016. PubMed PMID: 27843680; PubMed Central PMCID: PMC5054631.

87: Epstein NE. High neurological complication rates for extreme lateral lumbar interbody fusion and related techniques: A review of safety concerns. Surg Neurol Int. 2016 Sep 22;7(Suppl 25):S652-S655. eCollection 2016. PubMed PMID: 27843679; PubMed Central PMCID: PMC5054635.

88: Satake K, Kanemura T, Yamaguchi H, Segi N, Ouchida J. Predisposing Factors for Intraoperative Endplate Injury of Extreme Lateral Interbody Fusion. Asian Spine J. 2016 Oct;10(5):907-914. Epub 2016 Oct 17. PubMed PMID: 27790319; PubMed Central PMCID: PMC5081326.

89: Tessitore E, Molliqaj G, Schaller K, Gautschi OP. Extreme lateral interbody fusion (XLIF): A single-center clinical and radiological follow-up study of 20 patients. J Clin Neurosci. 2017 Feb;36:76-79. doi: 10.1016/j.jocn.2016.10.001. Epub 2016 Oct 17. PubMed PMID: 27765562.

90: Pereira EA, Farwana M, Lam KS. Extreme lateral interbody fusion relieves symptoms of spinal stenosis and low-grade spondylolisthesis by indirect decompression in complex patients. J Clin Neurosci. 2017 Jan;35:56-61. doi: 10.1016/j.jocn.2016.09.010. Epub 2016 Oct 1. PubMed PMID: 27707614.

91: Winder MJ, Gambhir S. Comparison of ALIF vs. XLIF for L4/5 interbody fusion: pros, cons, and literature review. J Spine Surg. 2016 Mar;2(1):2-8. doi: 10.21037/jss.2015.12.01. Review. PubMed PMID: 27683688; PubMed Central PMCID: PMC5039845.

92: Virk SS, Yu E. The Top 50 Articles on Minimally Invasive Spine Surgery. Spine (Phila Pa 1976). 2017 Apr 1;42(7):513-519. doi: 10.1097/BRS.0000000000001797. Review. PubMed PMID: 27438385.

93: Strom RG, Bae J, Mizutani J, Valone F 3rd, Ames CP, Deviren V. Lateral interbody fusion combined with open posterior surgery for adult spinal deformity. J Neurosurg Spine. 2016 Dec;25(6):697-705. Epub 2016 Jun 24. PubMed PMID: 27341052.

94: Notani N, Miyazaki M, Yoshiiwa T, Ishihara T, Tsumura H. Acute celiac artery compression syndrome after extensive correction of sagittal balance on an adult spinal deformity. Eur Spine J. 2017 May;26(Suppl 1):31-35. doi: 10.1007/s00586-016-4676-0. Epub 2016 Jun 23. PubMed PMID: 27339069.

95: Mandelli C, Colombo EV, Sicuri GM, Mortini P. Lumbar plexus nervous distortion in XLIF(®) approach: an anatomic study. Eur Spine J. 2016 Dec;25(12):4155-4163. Epub 2016 May 24. PubMed PMID: 27220971.

96: Narita W, Takatori R, Arai Y, Nagae M, Tonomura H, Hayashida T, Ogura T, Fujiwara H, Kubo T. Prevention of neurological complications using a neural monitoring system with a finger electrode in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2016 Oct;25(4):456-463. Epub 2016 May 20. PubMed PMID: 27203809.

97: Joseph JR, Smith BW, Patel RD, Park P. Use of 3D CT-based navigation in minimally invasive lateral lumbar interbody fusion. J Neurosurg Spine. 2016 Sep;25(3):339-44. doi: 10.3171/2016.2.SPINE151295. Epub 2016 Apr 22. PubMed PMID: 27104283.

98: Avila MJ, Walter CM, Baaj AA. Outcomes and Complications of Minimally Invasive Surgery of the Lumbar Spine in the Elderly. Cureus. 2016 Mar 5;8(3):e519. doi: 10.7759/cureus.519. PubMed PMID: 27081580; PubMed Central PMCID: PMC4829395.

99: Grimm BD, Leas DP, Poletti SC, Johnson DR 2nd. Postoperative Complications Within the First Year After Extreme Lateral Interbody Fusion: Experience of the First 108 Patients. Clin Spine Surg. 2016 Apr;29(3):E151-6. doi: 10.1097/BSD.0000000000000121. PubMed PMID: 27007791.

100: Härtl R, Joeris A, McGuire RA. Comparison of the safety outcomes between two surgical approaches for anterior lumbar fusion surgery: anterior lumbar interbody fusion (ALIF) and extreme lateral interbody fusion (ELIF). Eur Spine J. 2016 May;25(5):1484-1521. doi: 10.1007/s00586-016-4407-6. Epub 2016 Mar 17. Review. PubMed PMID: 26983424.

101: Epstein NE. More nerve root injuries occur with minimally invasive lumbar surgery: Let's tell someone. Surg Neurol Int. 2016 Jan 25;7(Suppl 3):S96-S101. doi: 10.4103/2152-7806.174896. eCollection 2016. PubMed PMID: 26904373; PubMed Central PMCID: PMC4743264.

102: Epstein NE. More nerve root injuries occur with minimally invasive lumbar surgery, especially extreme lateral interbody fusion: A review. Surg Neurol Int. 2016 Jan 25;7(Suppl 3):S83-95. doi: 10.4103/2152-7806.174895. eCollection 2016. PubMed PMID: 26904372; PubMed Central PMCID: PMC4743267.

103: Smith WD, Wohns RN, Christian G, Rodgers EJ, Rodgers WB. Outpatient Minimally Invasive Lumbar Interbody: Fusion Predictive Factors and Clinical Results. Spine (Phila Pa 1976). 2016 Apr;41 Suppl 8:S106-22. doi: 10.1097/BRS.0000000000001479. PubMed PMID: 26882504.

104: Isaacs RE, Sembrano JN, Tohmeh AG; SOLAS Degenerative Study Group. Two-Year Comparative Outcomes of MIS Lateral and MIS Transforaminal Interbody Fusion in the Treatment of Degenerative Spondylolisthesis: Part II: Radiographic Findings. Spine (Phila Pa 1976). 2016 Apr;41 Suppl 8:S133-44. doi: 10.1097/BRS.0000000000001472. PubMed PMID: 26839992.

105: Uribe JS, Myhre SL, Youssef JA. Preservation or Restoration of Segmental and Regional Spinal Lordosis Using Minimally Invasive Interbody Fusion Techniques in Degenerative Lumbar Conditions: A Literature Review. Spine (Phila Pa 1976). 2016 Apr;41 Suppl 8:S50-8. doi: 10.1097/BRS.0000000000001470. Review. PubMed PMID: 26825789.

106: Sembrano JN, Tohmeh A, Isaacs R; SOLAS Degenerative Study Group. Two-year Comparative Outcomes of MIS Lateral and MIS Transforaminal Interbody Fusion in the Treatment of Degenerative Spondylolisthesis: Part I: Clinical Findings. Spine (Phila Pa 1976). 2016 Apr;41 Suppl 8:S123-32. doi: 10.1097/BRS.0000000000001471. PubMed PMID: 26825788.

107: Capelli E, Beneš O, Colle JY, Konings RJ. Determination of the thermodynamic activities of LiF and ThF4 in the Li(x)Th(1-x)F(4-3x) liquid solution by Knudsen effusion mass spectrometry. Phys Chem Chem Phys. 2015 Nov 28;17(44):30110-8. doi: 10.1039/c5cp04777c. Epub 2015 Oct 26. PubMed PMID: 26498704.

108: Gabel BC, Hoshide R, Taylor W. An Algorithm to Predict Success of Indirect Decompression Using the Extreme Lateral Lumbar Interbody Fusion Procedure. Cureus. 2015 Sep 8;7(9):e317. doi: 10.7759/cureus.317. PubMed PMID: 26487993; PubMed Central PMCID: PMC4601908.

109: Alkadhim M, Zoccali C, Abbasifard S, Avila MJ, Patel AS, Sattarov K, Walter CM, Baaj AA. The surgical vascular anatomy of the minimally invasive lateral lumbar interbody approach: a cadaveric and radiographic analysis. Eur Spine J. 2015 Nov;24 Suppl 7:906-11. doi: 10.1007/s00586-015-4267-5. Epub 2015 Oct 20. PubMed PMID: 26487472.

110: Sun JC, Wang JR, Luo T, Jin XN, Ma R, Luo BE, Xu T, Wang Y, Wang HB, Zhang B, Liu X, Zheng B, Peng X, Hou Y, Guo YF, Xu GH, Shi GD, Shi JG. Surgical Incision and Approach in Thoracolumbar Extreme Lateral Interbody Fusion Surgery: An Anatomic Study of the Diaphragmatic Attachments. Spine (Phila Pa 1976). 2016 Feb;41(4):E186-90. doi: 10.1097/BRS.0000000000001183. PubMed PMID: 26352744.

111: Berends HI, Journée HL, Rácz I, van Loon J, Härtl R, Spruit M. Multimodality intraoperative neuromonitoring in extreme lateral interbody fusion. Transcranial electrical stimulation as indispensable rearview. Eur Spine J. 2016 May;25(5):1581-1586. doi: 10.1007/s00586-015-4182-9. Epub 2015 Aug 27. PubMed PMID: 26310841.

112: Cheng I, Briseño MR, Arrigo RT, Bains N, Ravi S, Tran A. Outcomes of Two Different Techniques Using the Lateral Approach for Lumbar Interbody Arthrodesis. Global Spine J. 2015 Aug;5(4):308-14. doi: 10.1055/s-0035-1546816. Epub 2015 Feb 19. PubMed PMID: 26225280; PubMed Central PMCID: PMC4516734.

113: Buric J. Relationship between psoas muscle dimensions and post operative thigh pain. A possible preoperative evaluation factor. Int J Spine Surg. 2015 Jul 7;9:27. doi: 10.14444/2027. eCollection 2015. PubMed PMID: 26196034; PubMed Central PMCID: PMC4505390.

114: Phan K, Rao PJ, Scherman DB, Dandie G, Mobbs RJ. Lateral lumbar interbody fusion for sagittal balance correction and spinal deformity. J Clin Neurosci. 2015 Nov;22(11):1714-21. doi: 10.1016/j.jocn.2015.03.050. Epub 2015 Jul 17. Review. PubMed PMID: 26190218.

115: Buric J, Bombardieri D. Direct lesion and repair of a common iliac vein during XLIF approach. Eur Spine J. 2016 May;25 Suppl 1:89-93. doi: 10.1007/s00586-015-4134-4. Epub 2015 Jul 19. PubMed PMID: 26188771.

116: Blizzard DJ, Hills CP, Isaacs RE, Brown CR. Extreme lateral interbody fusion with posterior instrumentation for spondylodiscitis. J Clin Neurosci. 2015 Nov;22(11):1758-61. doi: 10.1016/j.jocn.2015.05.021. Epub 2015 Jun 29. PubMed PMID: 26138052.

117: Youssef JA. Reply to the Letter to the Editor on: “Sterile Seroma Resulting from Multilevel XLIF Procedure as Possible Adverse Effect of Prophylactic Vancomycin Powder: A Case Report” (Evid Based Spine Care J 2014;5(2):127-133). Global Spine J. 2015 Jun;5(3):261. doi: 10.1055/s-0035-1552982. PubMed PMID: 26131401; PubMed Central PMCID: PMC4472293.

118: Birkenmaier C. Letter to the Editor on: “Sterile Seroma Resulting from Multilevel XLIF Procedure as Possible Adverse Effect of Prophylactic Vancomycin Powder: A Case Report” (Evid Based Spine Care J 2014;5(2):127-133). Global Spine J. 2015 Jun;5(3):259-60. doi: 10.1055/s-0035-1552983. PubMed PMID: 26131400; PubMed Central PMCID: PMC4472297.

119: Sembrano JN, Yson SC, Horazdovsky RD, Santos ER, Polly DW Jr. Radiographic Comparison of Lateral Lumbar Interbody Fusion Versus Traditional Fusion Approaches: Analysis of Sagittal Contour Change. Int J Spine Surg. 2015 May 19;9:16. doi: 10.14444/2016. eCollection 2015. PubMed PMID: 26114085; PubMed Central PMCID: PMC4480050.

120: von Keudell A, Alimi M, Gebhard H, Härtl R. Adult Degenerative Scoliosis with Spinal Stenosis Treated with Stand-Alone Cage via an Extreme Lateral Transpsoas Approach; a Case Report and Literature Review. Arch Bone Jt Surg. 2015 Apr;3(2):124-9. PubMed PMID: 26110180; PubMed Central PMCID: PMC4468624.

121: Chaudhary K, Speights K, McGuire K, White AP. Trans-cranial motor evoked potential detection of femoral nerve injury in trans-psoas lateral lumbar interbody fusion. J Clin Monit Comput. 2015 Oct;29(5):549-54. doi: 10.1007/s10877-015-9713-8. Epub 2015 Jun 17. PubMed PMID: 26076805.

122: Ohtori S, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Nakamura J, Ishikawa T, Miyagi M, Kamoda H, Suzuki M, Kubota G, Sakuma Y, Oikawa Y, Inage K, Sainoh T, Sato J, Fujimoto K, Shiga Y, Abe K, Toyone T, Inoue G, Takahashi K. Mini-Open Anterior Retroperitoneal Lumbar Interbody Fusion: Oblique Lateral Interbody Fusion for Lumbar Spinal Degeneration Disease. Yonsei Med J. 2015 Jul;56(4):1051-9. doi: 10.3349/ymj.2015.56.4.1051. PubMed PMID: 26069130; PubMed Central PMCID: PMC4479835.

123: Balsano M, Carlucci S, Ose M, Boriani L. A case report of a rare complication of bowel perforation in extreme lateral interbody fusion. Eur Spine J. 2015 Apr;24 Suppl 3:405-8. doi: 10.1007/s00586-015-3881-6. Epub 2015 Apr 24. PubMed PMID: 25906377.

124: Pimenta L. Less-invasive lateral lumbar interbody fusion (XLIF) surgical technique: video lecture. Eur Spine J. 2015 Apr;24 Suppl 3:441-2. doi: 10.1007/s00586-015-3948-4. PubMed PMID: 25904416.

125: Peterson MD. Complications avoidance in extreme lateral interbody fusion (XLIF): video lecture. Eur Spine J. 2015 Apr;24 Suppl 3:439-40. doi: 10.1007/s00586-015-3947-5. PubMed PMID: 25904415.

126: Elowitz EH. Central and foraminal indirect decompression in MIS lateral interbody fusion (XLIF): video lecture. Eur Spine J. 2015 Apr;24 Suppl 3:449-50. doi: 10.1007/s00586-015-3946-6. PubMed PMID: 25904414.

127: Alimi M, Hofstetter CP, Tsiouris AJ, Elowitz E, Härtl R. Extreme lateral interbody fusion for unilateral symptomatic vertical foraminal stenosis. Eur Spine J. 2015 Apr;24 Suppl 3:346-52. doi: 10.1007/s00586-015-3940-z. Epub 2015 Apr 18. PubMed PMID: 25893336.

128: Berjano P, Langella F, Damilano M, Pejrona M, Buric J, Ismael M, Villafañe JH, Lamartina C. Fusion rate following extreme lateral lumbar interbody fusion. Eur Spine J. 2015 Apr;24 Suppl 3:369-71. doi: 10.1007/s00586-015-3929-7. Epub 2015 Apr 17. PubMed PMID: 25893332.

129: Uribe JS, Isaacs RE, Youssef JA, Khajavi K, Balzer JR, Kanter AS, Küelling FA, Peterson MD; SOLAS Degenerative Study Group. Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial. Eur Spine J. 2015 Apr;24 Suppl 3:378-85. doi: 10.1007/s00586-015-3871-8. Epub 2015 Apr 15. PubMed PMID: 25874744.

130: Tatsumi R, Lee YP, Khajavi K, Taylor W, Chen F, Bae H. In vitro comparison of endplate preparation between four mini-open interbody fusion approaches. Eur Spine J. 2015 Apr;24 Suppl 3:372-7. doi: 10.1007/s00586-014-3708-x. Epub 2015 Jan 27. PubMed PMID: 25874742.

131: Khajavi K, Shen A, Lagina M, Hutchison A. Comparison of clinical outcomes following minimally invasive lateral interbody fusion stratified by preoperative diagnosis. Eur Spine J. 2015 Apr;24 Suppl 3:322-30. doi: 10.1007/s00586-015-3840-2. Epub 2015 Mar 27. PubMed PMID: 25813006.

132: Peiró-García A, Domínguez-Esteban I, Alía-Benítez J. Retroperitoneal hematoma after using the extreme lateral interbody fusion (XLIF) approach: Presentation of a case and a review of the literature. Rev Esp Cir Ortop Traumatol. 2016 Sep-Oct;60(5):330-4. doi: 10.1016/j.recot.2014.12.006. Epub 2015 Feb 18. Review. English, Spanish. PubMed PMID: 25703640.

133: Bendersky M, Solá C, Muntadas J, Gruenberg M, Calligaris S, Mereles M, Valacco M, Bassani J, Nicolás M. Monitoring lumbar plexus integrity in extreme lateral transpsoas approaches to the lumbar spine: a new protocol with anatomical bases. Eur Spine J. 2015 May;24(5):1051-7. doi: 10.1007/s00586-015-3801-9. Epub 2015 Feb 13. PubMed PMID: 25676611.

134: Hrabálek L, Čecháková E, Buřval S, Adamus M, Langová K, Vaverka M. [Use of artifiial bone in lateral interbody fusion of the lumbar spine: a prospective radiographic study]. Acta Chir Orthop Traumatol Cech. 2014;81(6):392-8. Czech. PubMed PMID: 25651294.

135: Fleege C, Rickert M, Rauschmann M. [The PLIF and TLIF techniques. Indication, technique, advantages, and disadvantages]. Orthopade. 2015 Feb;44(2):114-23. doi: 10.1007/s00132-014-3065-9. Review. German. PubMed PMID: 25588711.

136: Quante M, Halm H. [Extreme lateral interbody fusion. Indication, surgical technique, outcomes and specific complications]. Orthopade. 2015 Feb;44(2):138-45. doi: 10.1007/s00132-014-3070-z. Review. German. PubMed PMID: 25586505.

137: Bina RW, Zoccali C, Skoch J, Baaj AA. Surgical anatomy of the minimally invasive lateral lumbar approach. J Clin Neurosci. 2015 Mar;22(3):456-9. doi: 10.1016/j.jocn.2014.08.011. Epub 2014 Nov 3. Review. PubMed PMID: 25449209.

138: Kanno K, Ohtori S, Orita S, Yamauchi K, Eguchi Y, Aoki Y, Nakamura J, Miyagi M, Suzuki M, Kubota G, Inage K, Sainoh T, Sato J, Shiga Y, Abe K, Fujimoto K, Kanamoto H, Toyone T, Inoue G, Hanaoka E, Takahashi K. Miniopen oblique lateral L5-s1 interbody fusion: a report of 2 cases. Case Rep Orthop. 2014;2014:603531. doi: 10.1155/2014/603531. Epub 2014 Oct 21. PubMed PMID: 25400963; PubMed Central PMCID: PMC4221972.

139: Youssef JA, Orndorff DG, Scott MA, Ebner RE, Knewitz AP. Sterile Seroma Resulting from Multilevel XLIF Procedure as Possible Adverse Effect of Prophylactic Vancomycin Powder: A Case Report. Evid Based Spine Care J. 2014 Oct;5(2):127-33. doi: 10.1055/s-0034-1386754. PubMed PMID: 25364326; PubMed Central PMCID: PMC4212702.

140: Berjano P, Gautschi OP, Schils F, Tessitore E. Extreme lateral interbody fusion (XLIF®): how I do it. Acta Neurochir (Wien). 2015 Mar;157(3):547-51. doi: 10.1007/s00701-014-2248-9. Epub 2014 Oct 31. PubMed PMID: 25358971.

141: Tohmeh AG, Khorsand D, Watson B, Zielinski X. Radiographical and clinical evaluation of extreme lateral interbody fusion: effects of cage size and instrumentation type with a minimum of 1-year follow-up. Spine (Phila Pa 1976). 2014 Dec 15;39(26):E1582-91. doi: 10.1097/BRS.0000000000000645. PubMed PMID: 25341985.

142: Wang MY, Vasudevan R, Mindea SA. Minimally invasive lateral interbody fusion for the treatment of rostral adjacent-segment lumbar degenerative stenosis without supplemental pedicle screw fixation. J Neurosurg Spine. 2014 Dec;21(6):861-6. doi: 10.3171/2014.8.SPINE13841. Epub 2014 Oct 10. PubMed PMID: 25303619.

143: Parker SL, Devin CJ. Commentary on: “Sterile Seroma Resulting from Multilevel XLIF Procedure as Possible Adverse Effect of Prophylactic Vancomycin Powder: A Case Report”. Evid Based Spine Care J. 2014 Oct;5(2):134-5. doi: 10.1055/s-0034-1386759. PubMed PMID: 25278887; PubMed Central PMCID: PMC4174191.

144: Formica M, Berjano P, Cavagnaro L, Zanirato A, Piazzolla A, Formica C. Extreme lateral approach to the spine in degenerative and post traumatic lumbar diseases: selection process, results and complications. Eur Spine J. 2014 Oct;23 Suppl 6:684-92. doi: 10.1007/s00586-014-3545-y. Epub 2014 Sep 12. PubMed PMID: 25212441.

145: Assina R, Majmundar NJ, Herschman Y, Heary RF. First report of major vascular injury due to lateral transpsoas approach leading to fatality. J Neurosurg Spine. 2014 Nov;21(5):794-8. doi: 10.3171/2014.7.SPINE131146. Epub 2014 Sep 5. PubMed PMID: 25192374.

146: Lee CS, Chung SS, Pae YR, Park SJ. Mini-open approach for direct lateral lumbar interbody fusion. Asian Spine J. 2014 Aug;8(4):491-7. doi: 10.4184/asj.2014.8.4.491. Epub 2014 Aug 19. PubMed PMID: 25187867; PubMed Central PMCID: PMC4149993.

147: Malham GM, Parker RM, Goss B, Blecher CM, Ballok ZE. Indirect foraminal decompression is independent of metabolically active facet arthropathy in extreme lateral interbody fusion. Spine (Phila Pa 1976). 2014 Oct 15;39(22):E1303-10. doi: 10.1097/BRS.0000000000000551. PubMed PMID: 25099325.

148: Palejwala SK, Sheen WA, Walter CM, Dunn JH, Baaj AA. Minimally invasive lateral transpsoas interbody fusion using a stand-alone construct for the treatment of adjacent segment disease of the lumbar spine: review of the literature and report of three cases. Clin Neurol Neurosurg. 2014 Sep;124:90-6. doi: 10.1016/j.clineuro.2014.06.031. Epub 2014 Jul 1. Review. PubMed PMID: 25019458.

149: Fogel GR, Turner AW, Dooley ZA, Cornwall GB. Biomechanical stability of lateral interbody implants and supplemental fixation in a cadaveric degenerative spondylolisthesis model. Spine (Phila Pa 1976). 2014 Sep 1;39(19):E1138-46. doi: 10.1097/BRS.0000000000000485. PubMed PMID: 24979274.

150: Barrey C, Perrin G, Michel F, Vital JM, Obeid I. Pedicle subtraction osteotomy in the lumbar spine: indications, technical aspects, results and complications. Eur J Orthop Surg Traumatol. 2014 Jul;24 Suppl 1:S21-30. doi: 10.1007/s00590-014-1470-8. Epub 2014 May 7. PubMed PMID: 24801680.

151: Malham GM. Minimally invasive direct lateral corpectomy for the treatment of a thoracolumbar fracture. J Neurol Surg A Cent Eur Neurosurg. 2015 May;76(3):240-3. doi: 10.1055/s-0034-1368094. Epub 2014 May 2. PubMed PMID: 24793062.

152: Dangelmajer S, Zadnik PL, Rodriguez ST, Gokaslan ZL, Sciubba DM. Minimally invasive spine surgery for adult degenerative lumbar scoliosis. Neurosurg Focus. 2014 May;36(5):E7. doi: 10.3171/2014.3.FOCUS144. Review. PubMed PMID: 24785489.

153: He L, Dong J, Liu B, Chen R, Feng F, Rong L. [A MRI study of lumbar plexus in patients with degenerative lumbar scoliosis after extreme lateral interbody fusion]. Zhonghua Yi Xue Za Zhi. 2014 Jan 21;94(3):178-81. Chinese. PubMed PMID: 24731457.

154: Barbagallo GM, Albanese V, Raich AL, Dettori JR, Sherry N, Balsano M. Lumbar Lateral Interbody Fusion (LLIF): Comparative Effectiveness and Safety versus PLIF/TLIF and Predictive Factors Affecting LLIF Outcome. Evid Based Spine Care J. 2014 Apr;5(1):28-37. doi: 10.1055/s-0034-1368670. PubMed PMID: 24715870; PubMed Central PMCID: PMC3969425.

155: Dahdaleh NS, Smith ZA, Snyder LA, Graham RB, Fessler RG, Koski TR. Lateral transpsoas lumbar interbody fusion: outcomes and deformity correction. Neurosurg Clin N Am. 2014 Apr;25(2):353-60. doi: 10.1016/j.nec.2013.12.013. Review. PubMed PMID: 24703453.

156: Trahan J, Morales E, Richter EO, Tender GC. The effects of lumbar facet dowels on joint stiffness: a biomechanical study. Ochsner J. 2014 Spring;14(1):44-50. PubMed PMID: 24688332; PubMed Central PMCID: PMC3963051.

157: Meredith DS, Kepler CK, Huang RC, Hegde VV. Extreme Lateral Interbody Fusion (XLIF) in the Thoracic and Thoracolumbar Spine: Technical Report and Early Outcomes. HSS J. 2013 Feb;9(1):25-31. doi: 10.1007/s11420-012-9312-x. Epub 2013 Jan 25. PubMed PMID: 24426841; PubMed Central PMCID: PMC3640724.

158: Deviren V, Tang JA, Scheer JK, Buckley JM, Pekmezci M, McClellan RT, Ames CP. Construct Rigidity after Fatigue Loading in Pedicle Subtraction Osteotomy with or without Adjacent Interbody Structural Cages. Global Spine J. 2012 Dec;2(4):213-20. doi: 10.1055/s-0032-1331460. Epub 2012 Dec 6. PubMed PMID: 24353970; PubMed Central PMCID: PMC3864425.

159: Lykissas MG, Aichmair A, Sama AA, Hughes AP, Lebl DR, Cammisa FP, Girardi FP. Nerve injury and recovery after lateral lumbar interbody fusion with and without bone morphogenetic protein-2 augmentation: a cohort-controlled study. Spine J. 2014 Feb 1;14(2):217-24. doi: 10.1016/j.spinee.2013.06.109. Epub 2013 Nov 20. PubMed PMID: 24269858.

160: Hrabalek L, Sternbersky J, Adamus M. Risk of sympathectomy after anterior and lateral lumbar interbody fusion procedures. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015 Jun;159(2):318-26. doi: 10.5507/bp.2013.083. Epub 2013 Nov 21. PubMed PMID: 24263213.

161: Hughes AP, Taher F, Farshad M, Aichmair A. Multiple myeloma exacerbation following utilization of bone morphogenetic protein-2 in lateral lumbar interbody fusion: a case report and review of the literature. Spine J. 2014 Apr;14(4):e13-9. doi: 10.1016/j.spinee.2013.10.020. Epub 2013 Nov 1. Review. PubMed PMID: 24184638.

162: Gazzeri R, Faiola A, Neroni M, Fiore C, Callovini G, Pischedda M, Galarza M. Safety of intraoperative electrophysiological monitoring (TES and EMG) for spinal and cranial lesions. Surg Technol Int. 2013 Sep;23:296-306. PubMed PMID: 24085510.

163: Drazin D, Liu JC, Acosta FL Jr. CT navigated lateral interbody fusion. J Clin Neurosci. 2013 Oct;20(10):1438-41. doi: 10.1016/j.jocn.2012.12.028. Epub 2013 Aug 6. PubMed PMID: 23931938.

164: Caputo AM, Michael KW, Chapman TM, Jennings JM, Hubbard EW, Isaacs RE, Brown CR. Extreme lateral interbody fusion for the treatment of adult degenerative scoliosis. J Clin Neurosci. 2013 Nov;20(11):1558-63. doi: 10.1016/j.jocn.2012.12.024. Epub 2013 Jul 29. PubMed PMID: 23906522.

165: Spoor AB, Öner FC. Minimally invasive spine surgery in chronic low back pain patients. J Neurosurg Sci. 2013 Sep;57(3):203-18. Review. PubMed PMID: 23877267.

166: Phillips FM, Isaacs RE, Rodgers WB, Khajavi K, Tohmeh AG, Deviren V, Peterson MD, Hyde J, Kurd M. Adult degenerative scoliosis treated with XLIF: clinical and radiographical results of a prospective multicenter study with 24-month follow-up. Spine (Phila Pa 1976). 2013 Oct 1;38(21):1853-61. doi: 10.1097/BRS.0b013e3182a43f0b. PubMed PMID: 23873244.

167: Pimenta L, Marchi L, Oliveira L, Coutinho E, Amaral R. A prospective, randomized, controlled trial comparing radiographic and clinical outcomes between stand-alone lateral interbody lumbar fusion with either silicate calcium phosphate or rh-BMP2. J Neurol Surg A Cent Eur Neurosurg. 2013 Nov;74(6):343-50. doi: 10.1055/s-0032-1333420. Epub 2013 Feb 26. PubMed PMID: 23444134.

168: Johnson RD, Valore A, Villaminar A, Comisso M, Balsano M. Pelvic parameters of sagittal balance in extreme lateral interbody fusion for degenerative lumbar disc disease. J Clin Neurosci. 2013 Apr;20(4):576-81. doi: 10.1016/j.jocn.2012.05.032. Epub 2013 Jan 30. PubMed PMID: 23375396.

169: Berjano P, Lamartina C. Answer to the letter to the editor of T.A. Mattei concerning “Far lateral approaches (XLIF) in adult scoliosis” by P. Berjano and C. Lamartina (Eur spine j. 2012 Jul 27. [Epub ahead of print]). Eur Spine J. 2013 May;22(5):1186-90. doi: 10.1007/s00586-012-2637-9. Epub 2013 Jan 9. PubMed PMID: 23299722; PubMed Central PMCID: PMC3657043.

170: Mattei TA. Letter to the Editor concerning “Far lateral approaches (XLIF) in adult scoliosis” by P. Berjano and C. Lamartina (Eur spine j. 2012 Jul 27. [Epub ahead of print]): The order of the factors does affect the product: considerations on why coronal (and not sagittal) imbalance should dictate the sequence of the 'combined XLIF/posterior approach' to adult degenerative scoliosis. Eur Spine J. 2013 May;22(5):1183-5. doi: 10.1007/s00586-012-2636-x. Epub 2013 Jan 4. PubMed PMID: 23288455; PubMed Central PMCID: PMC3657061.

171: McAfee PC, Shucosky E, Chotikul L, Salari B, Chen L, Jerrems D. Multilevel extreme lateral interbody fusion (XLIF) and osteotomies for 3-dimensional severe deformity: 25 consecutive cases. Int J Spine Surg. 2013 Dec 1;7:e8-e19. doi: 10.1016/j.ijsp.2012.10.001. eCollection 2013. PubMed PMID: 25694908; PubMed Central PMCID: PMC4300965.

172: Woodall MN, Shakir B, Smitherman A, Choudhri H. Technical note: Resolution of spontaneous electromyographic discharge following disk-space distraction during lateral transpsoas interbody fusion. Int J Spine Surg. 2013 Dec 1;7:e39-41. doi: 10.1016/j.ijsp.2013.02.002. eCollection 2013. PubMed PMID: 25694902; PubMed Central PMCID: PMC4300971.

173: Tohmeh AG, Watson B, Tohmeh M, Zielinski XJ. Allograft cellular bone matrix in extreme lateral interbody fusion: preliminary radiographic and clinical outcomes. ScientificWorldJournal. 2012;2012:263637. doi: 10.1100/2012/263637. Epub 2012 Dec 2. PubMed PMID: 23251099; PubMed Central PMCID: PMC3518059.

174: Pimenta L, Turner AW, Dooley ZA, Parikh RD, Peterson MD. Biomechanics of lateral interbody spacers: going wider for going stiffer. ScientificWorldJournal. 2012;2012:381814. doi: 10.1100/2012/381814. Epub 2012 Nov 13. PubMed PMID: 23213284; PubMed Central PMCID: PMC3504399.

175: Malham GM, Ellis NJ, Parker RM, Seex KA. Clinical outcome and fusion rates after the first 30 extreme lateral interbody fusions. ScientificWorldJournal. 2012;2012:246989. doi: 10.1100/2012/246989. Epub 2012 Nov 1. PubMed PMID: 23213282; PubMed Central PMCID: PMC3504397.

176: Rodgers WB, Lehmen JA, Gerber EJ, Rodgers JA. Grade 2 spondylolisthesis at L4-5 treated by XLIF: safety and midterm results in the “worst case scenario”. ScientificWorldJournal. 2012;2012:356712. doi: 10.1100/2012/356712. Epub 2012 Oct 17. PubMed PMID: 23125555; PubMed Central PMCID: PMC3483667.

177: Hrabalek L, Adamus M, Gryga A, Wanek T, Tucek P. A comparison of complication rate between anterior and lateral approaches to the lumbar spine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014;158(1):127-32. doi: 10.5507/bp.2012.079. Epub 2012 Sep 5. PubMed PMID: 23073535.

178: Caputo AM, Michael KW, Chapman TM Jr, Massey GM, Howes CR, Isaacs RE, Brown CR. Clinical outcomes of extreme lateral interbody fusion in the treatment of adult degenerative scoliosis. ScientificWorldJournal. 2012;2012:680643. doi: 10.1100/2012/680643. Epub 2012 Sep 24. PubMed PMID: 23049476; PubMed Central PMCID: PMC3462377.

179: Uribe JS, Smith DA, Dakwar E, Baaj AA, Mundis GM, Turner AW, Cornwall GB, Akbarnia BA. Lordosis restoration after anterior longitudinal ligament release and placement of lateral hyperlordotic interbody cages during the minimally invasive lateral transpsoas approach: a radiographic study in cadavers. J Neurosurg Spine. 2012 Nov;17(5):476-85. doi: 10.3171/2012.8.SPINE111121. Epub 2012 Aug 31. PubMed PMID: 22938554.

180: Arnold PM, Anderson KK, McGuire RA Jr. The lateral transpsoas approach to the lumbar and thoracic spine: A review. Surg Neurol Int. 2012;3(Suppl 3):S198-215. doi: 10.4103/2152-7806.98583. Epub 2012 Jul 17. PubMed PMID: 22905326; PubMed Central PMCID: PMC3422088.

181: Berjano P, Lamartina C. Far lateral approaches (XLIF) in adult scoliosis. Eur Spine J. 2013 Mar;22 Suppl 2:S242-53. doi: 10.1007/s00586-012-2426-5. Epub 2012 Jul 27. Review. PubMed PMID: 22836363; PubMed Central PMCID: PMC3616466.

182: Smith WD, Christian G, Serrano S, Malone KT. A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci. 2012 May;19(5):673-80. doi: 10.1016/j.jocn.2011.09.010. Epub 2012 Jan 10. PubMed PMID: 22236486.

183: Hrabálek L, Adamus M, Wanek T. [Identification of the lumbosacral nerve plexus during the extreme lateral interbody fusion procedure]. Acta Chir Orthop Traumatol Cech. 2011;78(6):556-61. Czech. PubMed PMID: 22217410.

184: Marchi L, Oliveira L, Coutinho E, Pimenta L. The importance of the anterior longitudinal ligament in lumbar disc arthroplasty: 36-Month follow-up experience in extreme lateral total disc replacement. Int J Spine Surg. 2012 Dec 1;6:18-23. doi: 10.1016/j.ijsp.2011.09.002. eCollection 2012. PubMed PMID: 25694866; PubMed Central PMCID: PMC4300872.

185: Adamus M, Hrabalek L, Wanek T, Gabrhelik T, Zapletalova J. Intraoperative reversal of neuromuscular block with sugammadex or neostigmine during extreme lateral interbody fusion, a novel technique for spine surgery. J Anesth. 2011 Oct;25(5):716-20. doi: 10.1007/s00540-011-1209-1. Epub 2011 Aug 13. PubMed PMID: 21842171.

186: Smith WD, Youssef JA, Christian G, Serrano S, Hyde JA. Lumbarized sacrum as a relative contraindication for lateral transpsoas interbody fusion at L5-6. J Spinal Disord Tech. 2012 Jul;25(5):285-91. doi: 10.1097/BSD.0b013e31821e262f. PubMed PMID: 21606855.

187: Hrabálek L, Wanek T, Adamus M. [XLIF–a new technique of the lumbar vertebra disc replacement: initial experience]. Rozhl Chir. 2010 Dec;89(12):784-8. Czech. PubMed PMID: 21404522.

188: Jahangiri FR, Sherman JH, Holmberg A, Louis R, Elias J, Vega-Bermudez F. Protecting the genitofemoral nerve during direct/extreme lateral interbody fusion (DLIF/XLIF) procedures. Am J Electroneurodiagnostic Technol. 2010 Dec;50(4):321-35. PubMed PMID: 21313792.

189: Rodgers WB, Gerber EJ, Rodgers JA. Lumbar fusion in octogenarians: the promise of minimally invasive surgery. Spine (Phila Pa 1976). 2010 Dec 15;35(26 Suppl):S355-60. doi: 10.1097/BRS.0b013e3182023796. PubMed PMID: 21160400.

190: Oliveira L, Marchi L, Coutinho E, Pimenta L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976). 2010 Dec 15;35(26 Suppl):S331-7. doi: 10.1097/BRS.0b013e3182022db0. PubMed PMID: 21160397.

191: Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine (Phila Pa 1976). 2010 Dec 15;35(26 Suppl):S322-30. doi: 10.1097/BRS.0b013e3182022e04. PubMed PMID: 21160396.

192: Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, Chotikul L. Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine (Phila Pa 1976). 2010 Dec 15;35(26 Suppl):S302-11. doi: 10.1097/BRS.0b013e3182023438. PubMed PMID: 21160394.

193: Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976). 2011 Jan 1;36(1):26-32. doi: 10.1097/BRS.0b013e3181e1040a. PubMed PMID: 21192221.

194: Pimenta L, Oliveira L, Schaffa T, Coutinho E, Marchi L. Lumbar total disc replacement from an extreme lateral approach: clinical experience with a minimum of 2 years' follow-up. J Neurosurg Spine. 2011 Jan;14(1):38-45. doi: 10.3171/2010.9.SPINE09865. Epub 2010 Dec 17. PubMed PMID: 21166491.

195: Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2011 Jan;14(1):31-7. doi: 10.3171/2010.9.SPINE09871. Epub 2010 Dec 17. PubMed PMID: 21166486.

196: Karikari IO, Nimjee SM, Hardin CA, Hughes BD, Hodges TR, Mehta AI, Choi J, Brown CR, Isaacs RE. Extreme lateral interbody fusion approach for isolated thoracic and thoracolumbar spine diseases: initial clinical experience and early outcomes. J Spinal Disord Tech. 2011 Aug;24(6):368-75. doi: 10.1097/BSD.0b013e3181ffefd2. PubMed PMID: 21150667.

197: Papanastassiou ID, Eleraky M, Vrionis FD. Contralateral femoral nerve compression: An unrecognized complication after extreme lateral interbody fusion (XLIF). J Clin Neurosci. 2011 Jan;18(1):149-51. doi: 10.1016/j.jocn.2010.07.109. Epub 2010 Oct 20. PubMed PMID: 20965732.

198: Sharma AK, Kepler CK, Girardi FP, Cammisa FP, Huang RC, Sama AA. Lateral lumbar interbody fusion: clinical and radiographic outcomes at 1 year: a preliminary report. J Spinal Disord Tech. 2011 Jun;24(4):242-50. doi: 10.1097/BSD.0b013e3181ecf995. PubMed PMID: 20844451.

199: Dua K, Kepler CK, Huang RC, Marchenko A. Vertebral body fracture after anterolateral instrumentation and interbody fusion in two osteoporotic patients. Spine J. 2010 Sep;10(9):e11-5. doi: 10.1016/j.spinee.2010.07.007. PubMed PMID: 20797649.

200: Santillan A, Patsalides A, Gobin YP. Endovascular embolization of iatrogenic lumbar artery pseudoaneurysm following extreme lateral interbody fusion (XLIF). Vasc Endovascular Surg. 2010 Oct;44(7):601-3. doi: 10.1177/1538574410374655. Epub 2010 Jul 30. PubMed PMID: 20675335.

201: Daffner SD, Wang JC. Migrated XLIF cage: case report and discussion of surgical technique. Orthopedics. 2010 Jul 13;33(7):518. doi: 10.3928/01477447-20100526-21. PubMed PMID: 20608623.

202: Regev GJ, Haloman S, Chen L, Dhawan M, Lee YP, Garfin SR, Kim CW. Incidence and prevention of intervertebral cage overhang with minimally invasive lateral approach fusions. Spine (Phila Pa 1976). 2010 Jun 15;35(14):1406-11. doi: 10.1097/BRS.0b013e3181c20fb5. PubMed PMID: 20505573.

203: Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS. Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus. 2010 Mar;28(3):E7. doi: 10.3171/2010.1.FOCUS09263. PubMed PMID: 20192667.

204: Lubansu A. [Minimally invasive spine arthrodesis in degenerative spinal disorders]. Neurochirurgie. 2010 Feb;56(1):14-22. doi: 10.1016/j.neuchi.2009.12.002. Epub 2010 Feb 4. Review. French. PubMed PMID: 20116076.

205: Rodgers WB, Cox CS, Gerber EJ. Early complications of extreme lateral interbody fusion in the obese. J Spinal Disord Tech. 2010 Aug;23(6):393-7. doi: 10.1097/BSD.0b013e3181b31729. PubMed PMID: 20084027.

206: Rodgers WB, Gerber EJ, Patterson JR. Fusion after minimally disruptive anterior lumbar interbody fusion: Analysis of extreme lateral interbody fusion by computed tomography. SAS J. 2010 Jun 1;4(2):63-6. doi: 10.1016/j.esas.2010.03.001. eCollection 2010. PubMed PMID: 25802651; PubMed Central PMCID: PMC4365611.

207: Aryan HE, Newman CB, Gold JJ, Acosta FL Jr, Coover C, Ames CP. Percutaneous axial lumbar interbody fusion (AxiaLIF) of the L5-S1 segment: initial clinical and radiographic experience. Minim Invasive Neurosurg. 2008 Aug;51(4):225-30. doi: 10.1055/s-2008-1080915. PubMed PMID: 18683115.

208: Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006 Jul-Aug;6(4):435-43. PubMed PMID: 16825052.

1)
Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006 Jul-Aug;6(4):435-43. PubMed PMID: 16825052.
2)
Phan K, Rao PJ, Scherman DB, Dandie G, Mobbs RJ. Lateral lumbar interbody fusion for sagittal balance correction and spinal deformity. J Clin Neurosci. 2015 Nov;22(11):1714-21. doi: 10.1016/j.jocn.2015.03.050. Epub 2015 Jul 17. Review. PubMed PMID: 26190218.
3)
Blizzard DJ, Hills CP, Isaacs RE, Brown CR. Extreme lateral interbody fusion with posterior instrumentation for spondylodiscitis. J Clin Neurosci. 2015 Nov;22(11):1758-61. doi: 10.1016/j.jocn.2015.05.021. Epub 2015 Jun 29. PubMed PMID: 26138052.
4)
Berjano P, Langella F, Damilano M, Pejrona M, Buric J, Ismael M, Villafañe JH, Lamartina C. Fusion rate following extreme lateral lumbar interbody fusion. Eur Spine J. 2015 Apr;24 Suppl 3:369-71. doi: 10.1007/s00586-015-3929-7. Epub 2015 Apr 17. PubMed PMID: 25893332.
5)
Grimm BD, Leas DP, Poletti SC, Johnson DR 2nd. Postoperative Complications Within the First Year After Extreme Lateral Interbody Fusion: Experience of the First 108 Patients. J Spinal Disord Tech. 2014 Aug 5. [Epub ahead of print] PubMed PMID: 25099976.
6)
Benglis DM, Vanni S, Levi AD. An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine. 2009 Feb;10(2):139-44. doi: 10.3171/2008.10.SPI08479. PubMed PMID: 19278328.
7)
Patel NB, Dodd ZH, Voorhies J, Horn EM. Minimally invasive lateral transpsoas approach for spinal discitis and osteomyelitis. J Clin Neurosci. 2015 Nov;22(11):1753-7. doi: 10.1016/j.jocn.2015.03.061. Epub 2015 Jul 22. PubMed PMID: 26209920.
8)
Tartara F, Bongetta D, Pilloni G, Colombo EV, Giombelli E. Custom-made trabecular titanium implants for the treatment of lumbar degenerative discopathy via ALIF/XLIF techniques: rationale for use and preliminary results. Eur Spine J. 2019 Nov 6. doi: 10.1007/s00586-019-06191-y. [Epub ahead of print] PubMed PMID: 31696335.
9)
Gao Y, Li J, Cui H, Zhang F, Sun Y, Li Z, Ding W, Shen Y, Zhang W. Comparison of intervertebral fusion rates of different bone graft materials in extreme lateral interbody fusion. Medicine (Baltimore). 2019 Nov;98(44):e17685. doi: 10.1097/MD.0000000000017685. PubMed PMID: 31689790.
10)
Hiyama A, Sakai D, Sato M, Watanabe M. The analysis of percutaneous pedicle screw technique with guide wire-less in lateral decubitus position following extreme lateral interbody fusion. J Orthop Surg Res. 2019 Sep 5;14(1):304. doi: 10.1186/s13018-019-1354-z. PubMed PMID: 31488181; PubMed Central PMCID: PMC6729011.
11)
Lim KZ, Daly C, Brown J, Goldschlager T. Dynamic Posture-Related Preoperative Pain as a Single Clinical Criterion in Patient Selection for Extreme Lateral Interbody Fusion Without Direct Decompression. Global Spine J. 2019 Sep;9(6):575-582. doi: 10.1177/2192568218811317. Epub 2018 Nov 15. PubMed PMID: 31448189; PubMed Central PMCID: PMC6693074.
12)
Hiyama A, Katoh H, Sakai D, Sato M, Tanaka M, Nukaga T, Watanabe M. Changes in Spinal Alignment following eXtreme Lateral Interbody Fusion Alone in Patients with Adult Spinal Deformity using Computed Tomography. Sci Rep. 2019 Aug 19;9(1):12039. doi: 10.1038/s41598-019-48539-w. PubMed PMID: 31427641; PubMed Central PMCID: PMC6700163.
13)
Nomura H, Yamashita A, Watanabe T, Shirasawa K. Quantitative analysis of indirect decompression in extreme lateral interbody fusion and posterior spinal fusion with a percutaneous pedicle screw system for lumbar spinal stenosis. J Spine Surg. 2019 Jun;5(2):266-272. doi: 10.21037/jss.2019.06.03. PubMed PMID: 31380481; PubMed Central PMCID: PMC6626744.
14)
Goodnough LH, Koltsov J, Wang T, Xiong G, Nathan K, Cheng I. Decreased estimated blood loss in lateral trans-psoas versus anterior approach to lumbar interbody fusion for degenerative spondylolisthesis. J Spine Surg. 2019 Jun;5(2):185-193. doi: 10.21037/jss.2019.05.08. PubMed PMID: 31380471; PubMed Central PMCID: PMC6626735.
15)
Hah R, Kang HP. Lateral and Oblique Lumbar Interbody Fusion-Current Concepts and a Review of Recent Literature. Curr Rev Musculoskelet Med. 2019 Jun 22:305-310. doi: 10.1007/s12178-019-09562-6. [Epub ahead of print] Review. PubMed PMID: 31230190; PubMed Central PMCID: PMC6684701.
xlif.txt · Last modified: 2019/11/14 00:10 by administrador